An Authentication and Key Agreement Mechanism for Multi-domain Wireless Networks Using Certificateless Public-Key Cryptography

2014 ◽  
Vol 81 (2) ◽  
pp. 779-798 ◽  
Author(s):  
Ming Luo ◽  
Hong Zhao
Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5350
Author(s):  
Dae-Hwi Lee ◽  
Im-Yeong Lee

In the Internet of Things (IoT) environment, more types of devices than ever before are connected to the internet to provide IoT services. Smart devices are becoming more intelligent and improving performance, but there are devices with little computing power and low storage capacity. Devices with limited resources will have difficulty applying existing public key cryptography systems to provide security. Therefore, communication protocols for various kinds of participating devices should be applicable in the IoT environment, and these protocols should be lightened for resources-restricted devices. Security is an essential element in the IoT environment, so for secure communication, it is necessary to perform authentication between the communication objects and to generate the session key. In this paper, we propose two kinds of lightweight authentication and key agreement schemes to enable fast and secure authentication among the objects participating in the IoT environment. The first scheme is an authentication and key agreement scheme with limited resource devices that can use the elliptic curve Qu–Vanstone (ECQV) implicit certificate to quickly agree on the session key. The second scheme is also an authentication and key agreement scheme that can be used more securely, but slower than first scheme using certificateless public key cryptography (CL-PKC). In addition, we compare and analyze existing schemes and propose new schemes to improve security requirements that were not satisfactory.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6317
Author(s):  
Wenchao Cui ◽  
Rui Cheng ◽  
Kehe Wu ◽  
Yuling Su ◽  
Yuqing Lei

Power Internet of Things (IoT) is the application of IoT technology in the field of power grid, which can better control all kinds of power equipment, power personnel and operating environment. However, access to mass terminals brings higher requirements for terminal authentication and key management for the power IoT. And the traditional public key infrastructure (PKI) and identity-based public key cryptography (IB-PKC) exist the problems of certificate management and key escrow. Therefore, the paper proposes a novel authenticated key agreement scheme based on the certificateless public key cryptography (CL-PKC) mechanism. In addition, the proposed scheme is proven with the improved extended Canetti-Krawczyk (eCK) security model. Finally, the implementation of the authenticated key agreement protocol is given based on the actual application requirement of the power IoT, and the analysis and comparison of the simulation demonstrates that the proposed scheme has higher efficiency and would be suitable for the power IoT.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Gina Gallegos-Garcia ◽  
Horacio Tapia-Recillas

Electronic voting protocols proposed to date meet their properties based on Public Key Cryptography (PKC), which offers high flexibility through key agreement protocols and authentication mechanisms. However, when PKC is used, it is necessary to implement Certification Authority (CA) to provide certificates which bind public keys to entities and enable verification of such public key bindings. Consequently, the components of the protocol increase notably. An alternative is to use Identity-Based Encryption (IBE). With this kind of cryptography, it is possible to have all the benefits offered by PKC, without neither the need of certificates nor all the core components of a Public Key Infrastructure (PKI). Considering the aforementioned, in this paper we propose an electronic voting protocol, which meets the privacy and robustness properties by using bilinear maps.


Sign in / Sign up

Export Citation Format

Share Document