Radio Fingerprint Extraction Based on Marginal Fisher Deep Autoencoders

2018 ◽  
Vol 103 (4) ◽  
pp. 2729-2742 ◽  
Author(s):  
Jian-hang Huang ◽  
Ying-ke Lei
Keyword(s):  
Author(s):  
Ran Liu ◽  
Sumudu Hasala Marakkalage ◽  
Madhushanka Padmal ◽  
Thiruketheeswaran Shaganan ◽  
Chau Yuen ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1182
Author(s):  
Jiansheng Qian ◽  
Mingzhi Song

Fingerprint positioning based on WiFi in coal mines has received much attention because of the widespread application of WiFi. Fingerprinting techniques have developed rapidly due to the efforts of many researchers. However, the off-line construction of the radio fingerprint database is a tedious and time-consuming process. When the underground environments change, it may be necessary to update the signal received signal strength indication (RSSI) of all reference points, which will affect the normal working of a personnel positioning system. To solve this problem, an adaptive construction and update method based on a quantum-behaved particle swarm optimization–user-location trajectory feedback (QPSO–ULTF) for a radio fingerprint database is proposed. The principle of ULTF is that the mobile terminal records and uploads the related dataset in the process of user’s walking, and it forms the user-location track with RSSI through the analysis and processing of the positioning system server. QPSO algorithm is used for the optimal radio fingerprint match between the RSSI of the access point (AP) contained in the dataset of user-location track and the calibration samples to achieve the adaptive generation and update of the radio fingerprint samples. The experimental results show that the radio fingerprint database generated by the QPSO–ULTF is similar to the traditional radio fingerprint database in the statistical distribution characteristics of the signal received signal strength (RSS) at each reference point. Therefore, the adaptive radio fingerprint database can replace the traditional radio fingerprint database. The comparable results of well-known traditional positioning methods demonstrate that the radio fingerprint database generated or updated by the QPSO–ULTF has a good positioning effect, which can ensure the normal operation of a personnel positioning system.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Jae-Hoon Kim ◽  
Kyoung Sik Min ◽  
Woon-Young Yeo

The rapid growth of mobile communication and the proliferation of smartphones have drawn significant attention to location-based services (LBSs). One of the most important factors in the vitalization of LBSs is the accurate position estimation of a mobile device. The Wi-Fi positioning system (WPS) is a new positioning method that measures received signal strength indication (RSSI) data from all Wi-Fi access points (APs) and stores them in a large database as a form of radio fingerprint map. Because of the millions of APs in urban areas, radio fingerprints are seriously contaminated and confused. Moreover, the algorithmic advances for positioning face computational limitation. Therefore, we present a novel irregular grid structure and data analytics for efficient fingerprint map management. The usefulness of the proposed methodology is presented using the actual radio fingerprint measurements taken throughout Seoul, Korea.


Sign in / Sign up

Export Citation Format

Share Document