Media Independent Mobility Management for D2D Communications over Heterogeneous Networks (HetNets)

Author(s):  
Yi-Han Xu ◽  
Meng-Lian Liu ◽  
Jing-Wei Xie ◽  
Jun Zhou
2011 ◽  
Vol 1 ◽  
pp. 3-8
Author(s):  
Cong Zhao ◽  
Wei Guo

To achieve the goal that anybody could communicate with anyone at anytime in anyplace and in anyway, many technologies, such as GSM、CDMA、WCDMA、CDMA2000、TD-SCDMA、802.11a/b/g and so on, come true in the past years. And now, many B3G or 4G technologies are being studied. It is well-known that the future network would be heterogeneous networks. It is studied in this paper the mobility management of wireless heterogeneous network and a reversing paging process of callee is proposed which integrates paging and handoff. In the process when the caller pages the callee choosing its best suited network on one end, the callee chooses its own best network to begin a reversing paging process to set up the communication. The simulation tells that the proposed process has better performances in the call delay, the call succeeding rate and the wireless signal cost than that of the existing process in which it sets up the call first and then does vertical handoff independently.


2012 ◽  
Vol 50 (12) ◽  
pp. 70-78 ◽  
Author(s):  
David Lopez-Perez ◽  
Ismail Guvenc ◽  
Xiaoli Chu

2011 ◽  
pp. 685-698
Author(s):  
Guangbin Fan ◽  
Xuming Lu ◽  
Song Ci

Author(s):  
D. H. Manjaiah ◽  
P. Payaswini

Fourth Generation wireless networking (4G network) is expected to provide global roaming across different types of wireless and mobile networks. In this environment, roaming is seamless and users are always connected to the best network. Moreover, 4G networks will be packet switched systems entirely based on the IPv6 protocol. The essentiality of Quality of Service (QoS) and the heterogeneous nature of 4G pose high demands onto the mobility management technology. Due to this, one of the most challenging research areas for the 4G network is the design of intelligent mobility management techniques that take advantage of IP-based technologies to achieve global roaming among various access technologies. In order to address the issue of heterogeneity of the networks, IEEE 802.21 working group proposed Media Independent Handover (MIH). The scope of the IEEE 802.21 MIH standard is to develop a specification that provides link layer intelligence and other related network information to upper layers to optimize handovers between heterogeneous media. The IEEE 802.21 group defines the media independent handover function that will help mobile devices to roam across heterogeneous networks and stationary devices to switch over to any of the available heterogeneous networks around it.


Author(s):  
D. H. Manjaiah ◽  
P. Payaswini

Fourth Generation wireless networking (4G network) is expected to provide global roaming across different types of wireless and mobile networks. In this environment, roaming is seamless and users are always connected to the best network. Moreover, 4G networks will be packet switched systems entirely based on the IPv6 protocol. The essentiality of Quality of Service (QoS) and the heterogeneous nature of 4G pose high demands onto the mobility management technology. Due to this, one of the most challenging research areas for the 4G network is the design of intelligent mobility management techniques that take advantage of IP-based technologies to achieve global roaming among various access technologies. In order to address the issue of heterogeneity of the networks, IEEE 802.21 working group proposed Media Independent Handover (MIH). The scope of the IEEE 802.21 MIH standard is to develop a specification that provides link layer intelligence and other related network information to upper layers to optimize handovers between heterogeneous media. The IEEE 802.21 group defines the media independent handover function that will help mobile devices to roam across heterogeneous networks and stationary devices to switch over to any of the available heterogeneous networks around it.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yinuo He ◽  
Feiran Wang ◽  
Jianjun Wu

Device-to-device (D2D) communications and femtocell systems can bring significant benefits to users’ throughput. However, the complicated three-tier interference among macrocell, femtocell, and D2D systems is a challenging issue in heterogeneous networks. As D2D user equipment (UE) can cause interference to cellular UE, scheduling and allocation of channel resources and power of D2D communication need elaborate coordination. In this paper, we propose a joint scheduling and resource allocation scheme to improve the performance of D2D communication. We take UE rate and UE fairness into account by performing interference management. First, we construct a Stackelberg game framework in which we group a macrocellular UE, a femtocellular UE, and a D2D UE to form a two-leader one-follower pair. The cellular UE are leaders, and D2D UE is the follower who buys channel resources from the leaders. We analyze the equilibrium of the game and obtain solutions to the equilibrium. Second, we propose an algorithm for joint scheduling of D2D pairs based on their utility. Finally, we perform computer simulations to study the performance of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document