scholarly journals Multivariate statistics and entropy theory for irrigation water quality and entropy-weighted index development in a subtropical urban river, Bangladesh

Author(s):  
Md Abu Bakar Siddique ◽  
Abu Reza Md Towfiqul Islam ◽  
Md Saddam Hossain ◽  
Rahat Khan ◽  
Md Ahedul Akbor ◽  
...  
2021 ◽  
Author(s):  
Md Abu Bakar Siddique ◽  
Abu Reza Md. Towfiqul I ◽  
Md Saddam Hossain ◽  
Rahat Khan ◽  
Md Ahedul Akbor ◽  
...  

Abstract Currently, a well-developed combination of irrigation water quality index (IWQIs) and entropy water quality index (EWQIs) for surface water appraisal in a polluted subtropical urban river is very scarce in the literature. To close this gap, we developed IWQIs by establishing statistics-based weights of variables recommended by FAO 29 standard value using the National Sanitation Foundation Water Quality Index (NSFWQI) compared with the proposed EWQIs based on information entropy in the Dhaleshwari River, Bangladesh. Fifty surface water samples were collected from five sampling locations during the dry and wet seasons and analyzed for sixteen variables. Principal component analysis (PCA), factor analysis (FA), Moran’s spatial autocorrelation, and random forest (RF) model were employed in the datasets. Weights were allocated for preliminary variables to compute IWQI-1, 2 and EWQI-1, 2 respectively. The resultant IWQIs showed an analogous trend with EWQIs and revealed poor to good quality water, with IWQI-1 for the dry season and IWQI-2 for the wet season is further suggested. The entropy theory recognized that Mg, Cr, TDS, and Cl- for the dry season and Cd, Cr, Cl- and SO42- for the wet season are the major contaminants that affect irrigation water quality. The primary input variables were lessened to ultimately shortlisted ten variables, which revealed good performance in demonstrating water quality status since weights have come effectively from PCA than FA. The results of the RF model depict NO3-, Mg, and Cr as the most predominant variables influencing surface water quality. A significant dispersed pattern was detected for IWQImin-3 in the wet season (Moran’s I>0). Overall, both IWQIs and EWQIs will generate water quality control cost-effective, completely objective to establish a scientific basis of sustainable water management in the study basin.


2017 ◽  
Vol 37 (2) ◽  
pp. 193-214 ◽  
Author(s):  
M. Atikul Islam ◽  
Md. Mostafizur Rahman ◽  
Md. Bodrud-Doza ◽  
Md. Iftakharul Muhib ◽  
Mashura Shammi ◽  
...  

2015 ◽  
Vol 3 (2) ◽  
pp. 38 ◽  
Author(s):  
Shashi Kant ◽  
Y.V. Singh ◽  
Lokesh Kumar Jat ◽  
R. Meena ◽  
S.N. Singh

<p>In sustainable groundwater study, it is necessary to assess the quality of groundwater in terms of irrigation purposes. The present study attempts to assess the groundwater quality through Irrigation Water Quality Index (IWQI) in hard-rock aquifer system and sustainable water use in Lahar block, Bhind of district, Madhya Pradesh, India. The quality of ground water in major part of the study area is generally good. In order to understand the shallow groundwater quality, the water samples were collected from 40 tube wells irrigation water. The primary physical and chemical parameters like potential Hydrogen (pH), Total Dissolved Solids (TDS), calcium (Ca<sup>2+</sup>), magnesium (Mg<sup>2+</sup>), sodium (Na<sup>+</sup>), potassium (K<sup>+</sup>), bicarbonate (HCO<sub>3</sub><sup>-</sup>), carbonate (CO<sub>3</sub><sup>2-</sup>), chloride (Cl<sup>-</sup>), and nitrate (NO<sub>3</sub><sup>-</sup>) were analyzed for (irrigation water quality index ) IWQI. The secondary parameters of irrigation groundwater quality indices such as Sodium Adsorption Ratio (SAR), Sodium Soluble Percentage (SSP), Residual Sodium Carbonate (RSC), Permeability Index (PI), and Kellies Ratio (KR) were also derived from the primary parameter for irrigation water quality index (IWQI). The IWQI was classified into excellent to unfit condition of groundwater quality based on their Water Quality Index (WQI). The IWQI (82.5%+15.0%) indicate that slightly unsustainable to good quality of ground water. Due to this quality deterioration of shallow aquifer, an immediate attestation requires for sustainable development.</p>


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Elsiddig Eldaw ◽  
Tao Huang ◽  
Adam Khalifa Mohamed ◽  
Yahaya Mahama

AbstractDeterioration of groundwater quality due to drastic human interventions is rising at an alarming rate particularly in lower- and middle-income countries. Yet, limited research effort has been devoted to monitoring and ascertaining groundwater quality. The present study develops a comprehensive irrigation water quality index (IWQI) for rating water quality of shallow and deep aquifers in North Kurdufan province, Sudan. The new approach is developed to overcome the deficiencies of the existing irrigation indices and coming up with a unified decision for classifying water quality for irrigation purposes. Because of these indices like permeability index (PI), sodium absorption ratio (SAR), etc., depending on specific elements, entirely subjective, as well as the great variations in their results, particularly when classifying water quality. Thus, IWQI is created based on eight indices that are generally used to evaluate irrigation water quality, plus three physicochemical parameters have been proven an impact on water quality. The analytic hierarchy process (AHP) is applied to minimize the subjectivity at assign parameter weights under multiple criteria decision analysis tools (MCDA). The spatial distribution of IWQI agrees with the spatial distribution of the most parameters. The results of our approach reveal that the majority of samples are suitable for irrigation uses for both aquifers except few wells in the confined aquifer. Also, noted that there are very variations in the irrigation indices results for classifying water quality. The comparison result showed that the new index robust, fair calculations and has best classifying of water quality.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 512
Author(s):  
Michiele Gebrehiwet ◽  
Nata T. Tafesse ◽  
Solomon Habtu ◽  
Berhanu F. Alemaw ◽  
Kebabonye Laletsang ◽  
...  

This study evaluates the cause of salinization in an irrigation scheme of 100 ha supplied from a reservoir. The scheme is located in Gumselasa catchment (28 km2), Tigray region, northern Ethiopia. The catchment is underlain by limestone–shale–marl intercalations with dolerite intrusion and some recent sediments. Water balance computation, hydrochemical analyses and irrigation water quality analyses methods were used in this investigation. Surface waters (river and reservoir) and groundwater samples were collected and analyzed. The water table in the irrigated land is ranging 0.2–2 m below the ground level. The majority of groundwater in the effective watershed area and the river and dam waters are fresh and alkaline whereas in the command area the groundwater is dominantly brackish and alkaline. The main hydrochemical facies in the groundwater in the effective watershed area are Ca-Na-SO4-HCO3, Ca-Na- HCO3-SO4, and Ca-Na-Mg-SO4-HCO3. The river and dam waters are Mg-Na-HCO3-SO4 and HCO3-SO4-Cl types, respectively. In the command area the main hydrochemical facies in the groundwater are Ca-Na-HCO3-SO4 and Ca-Na-Mg-SO4-HCO3. Irrigation water quality analyses revealed that salinity and toxicity hazards increase from the effective watershed to the irrigated land following the direction of the water flow. The results also showed that the analyzed waters for irrigation purpose had no sodicity hazard. The major composition controlling mechanisms in the groundwater chemistry was identified as the dissolution of carbonate minerals, silicate weathering, and cation exchange. One of the impacts of the construction of the dam in the hydrologic environment of the catchment is on its groundwater potential. The dam is indirectly recharging the aquifers and enhances the groundwater potential of the area. This increment of availability of groundwater enhanced dissolution of carbonate minerals (calcite, dolomite, and gypsum), silicate weathering and cation exchange processes, which are the main causes of salinity in the irrigated land. The rising of the brackish groundwater combined with insufficient leaching contributed to secondary salinization development in the irrigated land. Installation of surface and subsurface drainage systems and planting salt tolerant (salt loving) plants are recommended to minimize the risk of salinization and salt accumulation in the soils of the irrigated land.


Sign in / Sign up

Export Citation Format

Share Document