sodium absorption ratio
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 22)

H-INDEX

7
(FIVE YEARS 2)

2022 ◽  
Vol 9 ◽  
Author(s):  
Mohd Yawar Ali Khan ◽  
Mohamed El Kashouty ◽  
Waleed Gusti ◽  
Amit Kumar ◽  
Ali Mohammad Subyani ◽  
...  

Seawater has intruded into many of Saudi Arabia’s Red Sea coastal aquifers, with varying degrees of extension depending on location, hydrogeology, and population density. This study aimed to evaluate and comprehend the processes that influence the hydrogeochemical characteristics of the coastal aquifer in Saudi Arabia’s Khulais region. Groundwater samples were taken from nineteen locations during the winter and summer of 2021, and data from major ions and trace elements were examined and interpreted using ArcGIS software. The total dissolved solids (TDS) concentrations ranged between 480 and 15,236 mg/L and 887–18,620 mg/L in winter and summer, respectively. Groundwater TDS concentration was observed to be influenced by groundwater flow, lithogenic, anthropogenic, and seawater intrusion in this study (2021) when compared to 2016. The concentration of nitrate (NO3−) and strontium (Sr) in most samples exceeds the drinking guidelines. The occurrence of high concentrations of bromide (Br), Fluoride (F), Iron (Fe) (winter and summer) and Aluminum (Al), Boron (B), Chromium (Cr), Nickel (Ni), lead (Pb), cadmium (Cd), cobalt (Co), copper (Cu) and manganese (Mn) (winter) was also exhibited and observed up to more than drinking and irrigation limits. The central part of the study area was affected by seawater intrusion. The hydraulic conductivity of the topsoil was measured, and it ranged from 0.24 to 29.3 m/day. Based on electrical conductivity (EC) and sodium absorption ratio, most aquifer samples were unsuitable for irrigation (SAR).


2021 ◽  
Vol 19 (1) ◽  
pp. 85-91
Author(s):  
Kehinde Ibrahim Adebayo ◽  
Victor Etim Nyong ◽  
Oluwaseye Peter Amah

Ten groundwater samples from hand dug wells were collected at Irun Akoko within the basement complex of part of southwestern Nigeria. The aim of the study was to determine the groundwater suitability for both drinking and irrigation purposes. The groundwater samples were analysed for some physical and chemical constituents including pH, Total Dissolved Solids (TDS), turbidity, Na, Ca, Mg, K, Cl, SO4, PO4 and NO3. The pH (7.0 – 7.9) and TDS (12.26 – 19.35 mg/l) of the groundwater indicate that the water is neutral to slightly alkaline and fresh respectively. The order of relative abundance for concentration of cations in the groundwater is K>Ca>Na>Mg, while that of anions is Cl>SO4>NO3>PO4. The concentrations of potassium in about 90% and chloride in about 40 % of the samples were above the World Health Organization (WHO) standard for drinking water. Other hydro-geochemical parameters Ca, Mg, Na, SO4, PO4 and NO3 falls within the WHO standards. Values of Sodium Absorption Ratio (SAR) classified the water as excellent for irrigation purposes. The Soluble Sodium Percentage (SSP) values classified eighty percent of the water to be of good quality and the remaining samples as fair for irrigation purposes. However, using the Magnesium Adsorption Ratio (55.0 – 68.9 %) the samples may have hazardous effects on the soil. Generally, groundwater in the study area is suitable for both domestic and irrigation uses.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Elsiddig Eldaw ◽  
Tao Huang ◽  
Adam Khalifa Mohamed ◽  
Yahaya Mahama

AbstractDeterioration of groundwater quality due to drastic human interventions is rising at an alarming rate particularly in lower- and middle-income countries. Yet, limited research effort has been devoted to monitoring and ascertaining groundwater quality. The present study develops a comprehensive irrigation water quality index (IWQI) for rating water quality of shallow and deep aquifers in North Kurdufan province, Sudan. The new approach is developed to overcome the deficiencies of the existing irrigation indices and coming up with a unified decision for classifying water quality for irrigation purposes. Because of these indices like permeability index (PI), sodium absorption ratio (SAR), etc., depending on specific elements, entirely subjective, as well as the great variations in their results, particularly when classifying water quality. Thus, IWQI is created based on eight indices that are generally used to evaluate irrigation water quality, plus three physicochemical parameters have been proven an impact on water quality. The analytic hierarchy process (AHP) is applied to minimize the subjectivity at assign parameter weights under multiple criteria decision analysis tools (MCDA). The spatial distribution of IWQI agrees with the spatial distribution of the most parameters. The results of our approach reveal that the majority of samples are suitable for irrigation uses for both aquifers except few wells in the confined aquifer. Also, noted that there are very variations in the irrigation indices results for classifying water quality. The comparison result showed that the new index robust, fair calculations and has best classifying of water quality.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Francisco Bautista ◽  
Aristeo Pacheco ◽  
Carmen Delgado

Since water is an increasingly limited resource, having methods for evaluating its quality is necessary to ensure an adequate and sustainableuse for human consumption, agriculture and industry. The aim of this work was to describe agriwater software for evaluating the quality of irrigation water. The software consisted of the following stages: a) development of a database capable of hosting all the information stored in the software; b) conversion of chemical units; c) indexes calculation; and d) evaluation of performance and efficiency in data processing. The Agriwater software converts measuring units of ions to mg L-1, meq L-1 and mmol L-1, calculating the following water quality indexes: sodium absorption ratio, effective salinity, potential salinity and chloride toxicity. The result is Agriwater software, a professional tool that can handle, analyze and evaluate thousands of data in seconds in an intuitive and simple way.


2021 ◽  
pp. 118-133
Author(s):  
Kuldeep ◽  
Sohil Sisodiya ◽  
Anil K. Mathur

Water is the most significant and essential compound required to survive all forms of life on Earth. The biggest upcoming crisis for most Indian metropolises is water scarcity. Kota metropolis having a population of more than 2 million, have a different scenario regarding this threat. Kota is situated on the bank of the Chambal river. It satisfies all the required water demand for drinking, irrigation, commercial and industrial activities, and other purposes. The assessment of Chambal river water quality has been conducted in this research work for drinking and irrigation purposes on a seasonal and annual basis. Twelve parameters were monitored regularly during the period of observation from 1st January 2019 to 31st December 2019. Kelly ratio, soluble sodium percentage, Kelly ratio, sodium absorption ratio, permeability index, and magnesium hazard are determined to access irrigation water quality index (IWQI), weather water quality index (WQI) is estimated for the assessment of potable water. Obtained results were compared with the Indian standard for drinking water "IS 10500:2012". Almost all parameters were within the safe limit of drinking and irrigation standards during the observation period. The calculated indices play a vital role in sustainable development related to urban development as it provides the best rating tool for the quality of water. Different aspects of water quality are accessible with these indices, which provide ultimate decision-making tools to stakeholders to implement the best management programs of the Chambal river's water.


Author(s):  
Mahmood Al Ramahi ◽  
Sándor Beszédes ◽  
Gábor Keszthelyi-Szabó

AbstractIndustrial wastewater is a growing environmental challenge due to its high concentrations of organics and its limited biological degradability. Up to date, however, no published work discussed industrial wastewater characterization, which is the focus of this study. Moreover, the effect of hydrothermal treatment on the chemical oxygen demand (COD) removal and the soluble chemical oxygen demand (SCOD) release was investigated in this work. Wastewater samples were collected from different industrial sites and characterized in order to determine their initial properties. It was summarized that the salinity of wastewater estimated by EC was relatively low, and its pH values were in the acceptable range. On the other hand, however, high values of sodium absorption ratio (SAR) were obtained in all samples post to hydrothermal treatment. Nonetheless, our results revealed higher SCOD release post to hydrothermal treatment suggesting better efficiency of COD removal obtained by this treatment technique.


2020 ◽  
Vol 69 (7) ◽  
pp. 704-719
Author(s):  
Gordon Amankwaa ◽  
Xifeng Yin ◽  
Liming Zhang ◽  
Weihong Huang ◽  
Yunfei Cao ◽  
...  

Abstract One of the six major meteoric lakes in the world, Lake Bosomtwe, is of great ecological significance for Ghanaians and the scientific community, most importantly for agricultural and human consumption. Water samples (n = 30) were collected to analyze the hydrogeochemical characteristics and water quality of the lake. Statistical methods including correlation, principal component, cluster analysis, Gibbs ratio, and the Piper–Trilinear diagram were used to analyze parameters. The Water Quality Index revealed that the lake water is not suitable for human consumption because measured pH, temperature, total dissolved solids, color, and bicarbonate exceeded their respective thresholds on all occasions. The calculated sodium absorption ratio (13.7–14.8) and soluble sodium percentage (94.43–95.43%) showed that the lake is not appropriate for irrigation as they exceeded their respective limit of 2 and 60%. The Gibbs ratio revealed that rock–water interaction is the underlying mechanism for water evolution. The Piper–Trilinear diagram revealed that alkalies earth and weak acids dominate the water chemistry of the lake. The dominant cation is sodium (82.22%), while the dominant anion is bicarbonate (79.39%). Five monitoring stations were identified, and the water quality was influenced by diverse anthropogenic and natural sources. The findings will provide a reference for policymakers and decision-makers at Lake Bosomtwe.


2020 ◽  
Vol 20 (8) ◽  
pp. 2971-2987
Author(s):  
Firdaus Kausar ◽  
Abdul Qadir ◽  
Sajid Rashid Ahmad ◽  
Mujtaba Baqar ◽  
Fozia Sardar

Abstract The Chenab River has always offered a cradle for civilizations in Punjab province of Pakistan; however, in recent times, the quality of this river has been gradually degraded due to several point and non-point pollution sources being introduced in its water. The riverine water quality was evaluated to check the suitability of water for drinking, livestock and irrigation purposes. Water samples (n = 54) were collected across the river, over a period of three years (2012–2014) and subjected to physicochemical analysis. Water quality index rating revealed that the water of River Chenab fell under the marginal category for drinking and livestock watering, due to the presence of heavy metals pollution above safe limits. Irrigation suitability parameters, such as the sodium absorption ratio (SAR), residual sodium carbonate (RSC), Na (%), Kelley's ratio (KR), magnesium hazard (MH) and the permeability index (PI) were measured, and most of the samples were within the safe limit. The piper classification of hydro-chemical parameters revealed that the alkaline-earth metals and strong acids exceed the alkali metals and weak acids, respectively. A Wilcox diagram indicated the alkali hazard was low while salinity hazard has an increasing trend. Spatiotemporal distribution of the pollutants highlighted minimal pollution until Qadirabad site (S4) which gradually keeps worsening at the downstream sites. Two factors of water quality deterioration were identified as pollution addition from the point and nonpoint sources, and diversion of the water through canals. It is inevitable to manage water quality of the Chenab River by reducing point sources pollution, through law enforcement.


Sign in / Sign up

Export Citation Format

Share Document