scholarly journals Social implications of palm oil production through social life cycle perspectives in Johor, Malaysia

2018 ◽  
Vol 24 (5) ◽  
pp. 935-944 ◽  
Author(s):  
Khairul Izzuddin Muhammad ◽  
Amir Hamzah Sharaai ◽  
Mohd Mansor Ismail ◽  
Rosta Harun ◽  
Wong Siew Yien
Author(s):  
Zainal Haryati ◽  
Vijaya Subramaniam ◽  
Zainura Zainon Noor ◽  
Zulkifli Hashim ◽  
Soh Kheang Loh ◽  
...  

2011 ◽  
Vol 35 (9) ◽  
pp. 3976-3984 ◽  
Author(s):  
Heinz Stichnothe ◽  
Frank Schuchardt

2021 ◽  
Vol 13 (4) ◽  
pp. 1607
Author(s):  
Najat Omran ◽  
Amir Hamzah Sharaai ◽  
Ahmad Hariza Hashim

The Malaysian palm oil is an important source of social development and economic growth in the country. Nevertheless, it has been accused of conducting unsustainable practices that may affect the sustainability of this industry. Thus, this study aims to identify the level of sustainability of crude palm oil (CPO) production. Environmental impacts were assessed using the International Organization for Standardization (ISO) standardized life cycle assessment (LCA). Economic impacts were evaluated using life cycle costing (LCC). Social impact assessment was identified based on the UNEP/SETAC Guidelines for social life cycle assessment (S-LCA). Life cycle sustainability assessment (LCSA) was used to combine three methods: LCA, life cycle costing (LCC) and S-LCA using the scoring system method. Finally, a presentation technique was developed to visualize the LCSA results. The results show that crude palm oil production requires more improvement to be a sustainable product. The study feasibly enables the decision-makers to understand the significant environmental, economic, and social hotspots during the crude palm oil production process in order to promote palm oil production.


2020 ◽  
Vol 190 ◽  
pp. 00021 ◽  
Author(s):  
Kiman Siregar ◽  
Sholihati Sholiati ◽  
Intan Sofiah ◽  
Try Miharza ◽  
Roy Hendroko Setyobudi ◽  
...  

Palm oil has benefits for economic and social development in Indonesia. However, palm oil is faced by several environmental problems most of them due to the land conversion from forest to the palm plantation. Therefore, numerous greenhouse gas emissions and other environmental effects also emitted during palm oil and biodiesel production. The life cycle assessment (LCA) method can be used for the evaluation of the palm oil production process impact on the environment as well as for potentially reducing the hotspot. A literature study was used in the identification of the implementation of LCA for biodiesel from palm oil in Indonesia. Study cradle to grave LCA for biodiesel production in Indonesia was still limited. Gate to gate and cradle to gate system boundary was the major boundary system used in the identification of the environmental effect for biodiesel production in Indonesia. However, numerous study has applied that boundary system and various scenario has been proposed in reducing the environmental effect for biodiesel production. Limitation of the LCA boundary for palm oil production is needed to be enhanced as well. Robust life cycle inventory in a wider range (i.e., cradle to grave) will be needed in order to present this industry in a global forum.


Author(s):  
Victor Baron ◽  
Mohamed Saoud ◽  
Joni Jupesta ◽  
Ikhsan Rezky Praptantyo ◽  
Hartono Tirto Admojo ◽  
...  

Palm oil mill’s co-products (empty fruit bunch – EFB and palm oil mill effluent – POME) management is a matter of concern in Indonesia. Co-composting is a promising waste management practice that would allow a reduction of environmental impact and a restitution of organic matter to the soil. This study is a part of a Life Cycle Assessment (LCA) project and aims to pinpoint the most environmentally impacting compartments of the palm oil production chain. It deals more specifically with the Life Cycle Inventory of data on the composting process based on site specific data. Data on the recycled biomass, energy demand and yielded compost properties were recorded in an industrial palm oil mill over one year. Due to the local conditions, high nutrient leaching from the compost were recorded and the compost remained very wet and hot (thermophilic phase). The composting process only led to 40% of methane avoidance compared to anaerobic digestion of POME, and the global nutrient recovery efficiency was below 50%. We identified the following critical parameters to increase environmental benefits from composting:      i) the POME/FFB ratio from the mill ii) the roofing of the composting platform, iii) the POME/EFB ratio, iv) the turning frequency, v) the recycling of leachates and vi) the process duration and drying period. The nutrient recovery and the doses of compost applied in the field depend on all of those inter-connected parameters. The data presented will be used within LCA models to assess net environmental benefits from various POME and EFB co-composting systems.


Author(s):  
Heinz Stichnothe ◽  
Cécile Bessou

Growing demand for palm oil is driven by increasing human population, income growth as well as biodiesel stimulation programs. Covering an area of over ten million ha in Indonesia, palm oil production is also one of the most important sources of crop residues while processing generates large amounts of wastewater. Cultivation and processing of this crop are considered as potentially large sources of emissions. Improving environmental impacts of the palm oil production can help to reduce existing emissions while increasing yield and generating surplus energy and farm income. However, area expansion for oil palm plantation is perceived as  closely linked to illegal logging, deforestation and diminishing biodiversity. Apart from ensuring sustainable land use change, the use of residues is the most important criterion in ensuring sustainable palm oil. It is important to note that there are trade-offs (e.g. between maximizing bio energy production, reducing environmental impacts other than greenhouse gases (GHG), and sustaining soil fertility). Nitrogen (N) losses in palm oil production systems are a major environmental and economic issue. Unfortunately,  there is little comprehensive knowledge on how to calculate N-budgets in oil palm plantation in order to optimize fertilization, taking into account N-leaching and N-gaseous emissions. Land use, soil-carbon, N-emissions and biodiversity are key aspects of life cycle assessment (LCA) of palm oil production systems and they pose a number of methodological questions.


Sign in / Sign up

Export Citation Format

Share Document