Dehn twists and products of mapping classes of riemann surfaces with one puncture

2011 ◽  
Vol 32 (6) ◽  
pp. 885-894
Author(s):  
Chaohui Zhang
Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter focuses on the construction as well as the algebraic and dynamical properties of pseudo-Anosov homeomorphisms. It first presents five different constructions of pseudo-Anosov mapping classes: branched covers, constructions via Dehn twists, homological criterion, Kra's construction, and a construction for braid groups. It then proves a few fundamental facts concerning stretch factors of pseudo-Anosov homeomorphisms, focusing on the theorem that pseudo-Anosov stretch factors are algebraic integers. It also considers the spectrum of pseudo-Anosov stretch factors, along with the special properties of those measured foliations that are the stable (or unstable) foliations of some pseudo-Anosov homeomorphism. Finally, it describes the orbits of a pseudo-Anosov homeomorphism as well as lengths of curves and intersection numbers under iteration.


2010 ◽  
Vol 88 (3) ◽  
pp. 413-428 ◽  
Author(s):  
C. ZHANG

AbstractLet S be a Riemann surface of type (p,n) with 3p+n>4 and n≥1. We investigate products of some pseudo-Anosov maps θ and Dehn twists tα on S, and prove that under certain conditions the products tkα∘θ are pseudo-Anosov for all integers k. We also give examples that show that tkα∘θ are not pseudo-Anosov for some integers k.


2018 ◽  
Vol 2020 (23) ◽  
pp. 9674-9693
Author(s):  
Yohsuke Watanabe

Abstract We obtain a coarse relationship between geometric intersection numbers of curves and the sum of their subsurface projection distances with explicit quasi-constants. By using this relationship, we study intersection numbers of curves contained in geodesics in the curve graph. Furthermore, we generalize a well-known result on intersection number growth of curves under iteration of Dehn twists and multitwists for all kinds of pure mapping classes.


Author(s):  
Dusa McDuff ◽  
Dietmar Salamon

This chapter begins with a general discussion of symplectic fibrations and symplectic forms on the total space. The next section describes in detail symplectic 2-sphere bundles over Riemann surfaces. Subsequent sections develop the notions of symplectic connection and holonomy, explain the Sternberg–Weinstein universal construction for fibre bundles, discuss Seidel’s construction of generalized Dehn twists, and introduce the Guillemin–Lerman–Sternberg coupling form. The final section studies Hamiltonian fibrations.


2013 ◽  
Vol 50 (1) ◽  
pp. 31-50
Author(s):  
C. Zhang

The purpose of this article is to utilize some exiting words in the fundamental group of a Riemann surface to acquire new words that are represented by filling closed geodesics.


Author(s):  
Benson Farb ◽  
Dan Margalit

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. It begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn–Nielsen–Baer–theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.


Author(s):  
Serhii Volkov ◽  
Vladimir Ryazanov

The present paper is a natural continuation of our previous paper (2017) on the boundary behavior of mappings in the Sobolev classes on Riemann surfaces, where the reader will be able to find the corresponding historic comments and a discussion of many definitions and relevant results. The given paper was devoted to the theory of the boundary behavior of mappings with finite distortion by Iwaniec on Riemannian surfaces first introduced for the plane in the paper of Iwaniec T. and Sverak V. (1993) On mappings with integrable dilatation and then extended to the spatial case in the monograph of Iwaniec T. and Martin G. (2001) devoted to Geometric function theory and non-linear analysis. At the present paper, it is developed the theory of the boundary behavior of the so--called mappings with finite length distortion first introduced in the paper of Martio O., Ryazanov V., Srebro U. and Yakubov~E. (2004) in the spatial case, see also Chapter 8 in their monograph (2009) on Moduli in modern mapping theory. As it was shown in the paper of Kovtonyuk D., Petkov I. and Ryazanov V. (2017) On the boundary behavior of mappings with finite distortion in the plane, such mappings, generally speaking, are not mappings with finite distortion by Iwaniec because their first partial derivatives can be not locally integrable. At the same time, this class is a generalization of the known class of mappings with bounded distortion by Martio--Vaisala from their paper (1988). Moreover, this class contains as a subclass the so-called finitely bi-Lipschitz mappings introduced for the spatial case in the paper of Kovtonyuk D. and Ryazanov V. (2011) On the boundary behavior of generalized quasi-isometries, that in turn are a natural generalization of the well-known classes of bi-Lipschitz mappings as well as isometries and quasi-isometries. In the research of the local and boundary behavior of mappings with finite length distortion in the spatial case, the key fact was that they satisfy some modulus inequalities which was a motivation for the consideration more wide classes of mappings, in particular, the Q-homeomorphisms (2005) and the mappings with finite area distortion (2008). Hence it is natural that under the research of mappings with finite length distortion on Riemann surfaces we start from establishing the corresponding modulus inequalities that are the main tool for us. On this basis, we prove here a series of criteria in terms of dilatations for the continuous and homeomorphic extension to the boundary of the mappings with finite length distortion between domains on arbitrary Riemann surfaces.


Sign in / Sign up

Export Citation Format

Share Document