fibre bundles
Recently Published Documents


TOTAL DOCUMENTS

472
(FIVE YEARS 45)

H-INDEX

29
(FIVE YEARS 3)

Author(s):  
Albert Hernandez-Estrada ◽  
Jörg Müssig ◽  
Mark Hughes

AbstractThis work investigated the impact that the processing of hemp (C. sativa L.) fibre has on the mechanical properties of unidirectional fibre-reinforced epoxy resin composites loaded in axial tension, and particleboard reinforced with aligned fibre bundles applied to one surface of the panel. For this purpose, mechanically processed (decorticated) and un-processed hemp fibre bundles, obtained from retted and un-retted hemp stems, were utilised. The results clearly show the impact of fibre reinforcement in both materials. Epoxy composites reinforced with processed hemp exhibited 3.3 times greater tensile strength when compared to the un-reinforced polymer, while for the particleboards, the bending strength obtained in those reinforced with processed hemp was 1.7 times greater than the un-reinforced particleboards. Moreover, whether the fibre bundles were processed or un-processed also affected the mechanical performance, especially in the epoxy composites. For example, the un-processed fibre-reinforced epoxy composites exhibited 49% greater work of fracture than the composites reinforced with processed hemp. In the wood-based particleboards, however, the difference was not significant. Additionally, observations of the fracture zone of the specimens showed different failure characteristics depending on whether the composites were reinforced with processed or un-processed hemp. Both epoxy composites and wood-based particleboards reinforced with un-processed hemp exhibited fibre reinforcement apparently able to retain structural integrity after the composite’s failure. On the other hand, when processed hemp was used as reinforcement, fibre bundles showed a clear cut across the specimen, with the fibre-reinforcement mainly failing at the composite's fracture zone.


2021 ◽  
Author(s):  
Max S. Farnworth ◽  
Gregor Bucher ◽  
Volker Hartenstein

Insect brains are formed by conserved sets of neural lineages whose fibres form cohesive bundles with characteristic projection patterns. Within the brain neuropil these bundles establish a system of fascicles constituting the macrocircuitry of the brain. The overall architecture of the neuropils and the macrocircuitry appear to be conserved. However, variation is observed e.g., in size and shape and timing of development. Unfortunately, the developmental and genetic basis of this variation is poorly understood although the rise of new genetically tractable model organisms such as the red flour beetle Tribolium castaneum allows the possibility to gain mechanistic insights. To facilitate such work, we present an atlas of the developing brain of T. castaneum, covering the first larval instar, the prepupal stage and the adult, by combining wholemount immunohistochemical labelling of fibre bundles (acetylated tubulin) and neuropils (synapsin) with digital 3D reconstruction using the TrakEM2 software package. Upon comparing this anatomical dataset with the published work in D. melanogaster, we confirm an overall high degree of conservation. Fibre tracts and neuropil fascicles, which can be visualized by global neuronal antibodies like anti-acetylated tubulin in all invertebrate brains, create a rich anatomical framework to which individual neurons or other regions of interest can be referred to. The framework of a largely conserved pattern allowed us to describe differences between the two species with respect to parameters such as timing of neuron proliferation and maturation. These features likely reflect adaptive changes in developmental timing that govern the change from larval to adult brain.


2021 ◽  
Author(s):  
Helmut Schmidt ◽  
Thomas Reiner Kn&oumlsche

Experimental and theoretical studies have shown that ephaptic coupling leads to the synchronisation and slowing down of spikes propagating along the axons within peripheral nerve bundles. However, the main focus thus far has been on a small number of identical axons, whereas realistic peripheral nerve bundles contain numerous axons with different diameters. Here, we present a computationally efficient spike propagation model, which captures the essential features of propagating spikes and their ephaptic interaction, and facilitates the theoretical investigation of spike volleys in large, heterogeneous fibre bundles. The spike propagation model describes an action potential, or spike, by its position on the axon, and its velocity. The velocity is primarily defined by intrinsic features of the axons, such as diameter and myelination status, but it is also modulated by changes in the extracellular potential. These changes are due to transmembrane currents that occur during the generation of action potentials. The resulting change in the velocity is appropriately described by a linearised coupling function, which is calibrated with a biophysical model. We first lay out the theoretical basis to describe how the spike in an active axon changes the membrane potential of a passive axon. These insights are then incorporated into the spike propagation model, which is calibrated with a biophysically realistic model based on Hodgkin-Huxley dynamics. The fully calibrated model is then applied to fibre bundles with a large number of axons and different types of axon diameter distributions. One key insight of this study is that the heterogeneity of the axonal diameters has a dispersive effect, and that with increasing level of heterogeneity the ephaptic coupling strength has to increase to achieve full synchronisation between spikes. Another result of this study is that in the absence of full synchronisation, a subset of spikes on axons with similar diameter can form synchronised clusters. These findings may help interpret the results of noninvasive experiments on the electrophysiology of peripheral nerves.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
S. Hajdú ◽  
T. Mestdag
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryan Warr ◽  
Matthew C. Jewell ◽  
Neil Mitchell ◽  
Alexander Rack ◽  
Jack Swanson ◽  
...  

AbstractTwo sections of heat-treated (HT) and non-heat-treated (NHT) Cable-in-Conduit Conductor (CICC) of a design similar to the ITER tokomak have been imaged using very high energy X-ray tomography at the ESRF beamline ID19. The sample images were collected at four temperatures down to 77 K. These results showed a greater degree of movement, bundle distortion and touching strands in the NHT sample. The HT sample showed non-linear movements with temperature especially close to 77 K; increasing non-circularity of the superconducting fibre bundles towards the periphery of the CICC, and touching bundles throughout the CICC. The images have highlighted where future design might improve potential weakness, in particular at the outer perimeters of the conductor and the individual sub-cable, ‘petal’ wraps.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wang Miao ◽  
Junshuang Guo ◽  
Shuyu Zhang ◽  
Nannan Shen ◽  
Xiaoping Shang ◽  
...  

Objective: There is currently no effective treatment for Japanese encephalitis, which has a high rate of morbidity and mortality. This study assessed the effectiveness of a ganciclovir, methylprednisolone, and immunoglobulin combination (TAGMIC) therapy in decreasing cognitive impairment and mortality among patients with Japanese encephalitis.Methods: We retrospectively assessed the clinical data of 31 patients diagnosed with Japanese encephalitis, who were admitted to an intensive care unit. Patients were divided into the TAGMIC and non-TAGMIC group according to their treatment regime. We compared the 60-day, 6-month, and overall mortality and survival curves between groups. We also compared Barthel Index scores, Montreal Cognitive Assessment (MoCA) scores, and diffusion tensor imaging (DTI) results.Results: There was no significant difference in the 30-day mortality rate or Kaplan–Meier survival curve between groups. The 60-day, 6-month, and overall mortality rates in the TAGMIC group were significantly reduced (P = 0.043, P = 0.018, and P = 0.018, respectively) compared with the non-TAGMIC group (0, 0, 0 vs. 31.25, 37.5, 37.5%, respectively). The 60-day, 6-month, and overall Kaplan–Meier survival curves were significantly different between groups (P = 0.020, P = 0.009, P = 0.009, respectively). There was no significant difference in the Barthel Index scores of surviving patients. Among the five patients who underwent MoCA and DTI, four had a score of 0/5 for delayed recall (no cue), while the remaining patient had a score of 2/5. All five patients were able to achieve a score of 5/5 with classification and multiple-choice prompts, and had sparse or broken corpus callosum (or other) fibre bundles.Conclusion: TAGMIC treatment can reduce mortality due to severe Japanese encephalitis. The memory loss of surviving patients is mainly due to a disorder of the memory retrieval process, which may be related to the breakage of related fibre bundles.


2021 ◽  
Vol 171 ◽  
pp. 113856
Author(s):  
Komlavi Gogoli ◽  
Florian Gehring ◽  
Christophe Poilâne ◽  
Magali Morales

2021 ◽  
Author(s):  
Tom Sunny ◽  
Kim L. Pickering

The alkali treatment is aimed to modify the surface chemistry of natural plant fibres effectively through several factors. This treatment has been carried out at ambient and high temperature. Natural plant fibres treated with alkali have been seen to have benefits such as improved separation of fibres from fibre bundles, improved removal of unwanted surface constituents, increased tensile strength and stiffness, better thermal stability, and enhanced interfacial adhesions compared to other standard treatments. Hemp fibres are an attractive reinforcement for natural plant fibres as they are environmentally friendly compared to other natural plant fibres and exhibit good mechanical properties. This chapter mainly provides an overview of alkali treatments on hemp fibres.


Author(s):  
DAVID MICHAEL ROBERTS

Abstract Many bundle gerbes are either infinite-dimensional, or finite-dimensional but built using submersions that are far from being fibre bundles. Murray and Stevenson [‘A note on bundle gerbes and infinite-dimensionality’, J. Aust. Math. Soc.90(1) (2011), 81–92] proved that gerbes on simply-connected manifolds, built from finite-dimensional fibre bundles with connected fibres, always have a torsion $DD$ -class. I prove an analogous result for a wide class of gerbes built from principal bundles, relaxing the requirements on the fundamental group of the base and the connected components of the fibre, allowing both to be nontrivial. This has consequences for possible models for basic gerbes, the classification of crossed modules of finite-dimensional Lie groups, the coefficient Lie-2-algebras for higher gauge theory on principal 2-bundles and finite-dimensional twists of topological K-theory.


2021 ◽  
pp. 100899
Author(s):  
Yiyin Su ◽  
Lei Xu ◽  
Pengyu Zhou ◽  
Jianwei Yang ◽  
Kai Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document