Review of single-camera stereo-digital image correlation techniques for full-field 3D shape and deformation measurement

2017 ◽  
Vol 61 (1) ◽  
pp. 2-20 ◽  
Author(s):  
Bing Pan ◽  
LiPing Yu ◽  
QianBing Zhang
Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4726 ◽  
Author(s):  
Bo Dong ◽  
Fancang Zeng ◽  
Bing Pan

A simple and practical full-frame single-camera stereo-digital image correlation (stereo-DIC) technique for three-dimensional (3D) shape, displacement, and deformation measurements is proposed. The technique uses a compact X-cube prism-based color separation device and a color camera to capture images of blue and red colors from different optical paths, and then extracts the surface 3D shape and deformation information of a test sample by processing the captured two sub-channel color images using regular stereo-DIC algorithm. Compared with the existing full-frame single-camera stereo-DICs, the proposed one eliminates the need for a beam splitter and two bandpass filters to capture images, and offers more simple, compact, and easy-to-use optical arrangement. This novel single-camera stereo-DIC technique was validated by a series of baseline experiments involving 3D surface reconstructions, translation tests, and full-field deformation measurements, which provide a new flexible and practical avenue for measuring surface 3D shape and deformation, particularly in microscopic and high-speed applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Cong Sun ◽  
Haibo Liu ◽  
Yang Shang ◽  
Shengyi Chen ◽  
Qifeng Yu

To further extend the scope of stereo-digital image correlation (stereo-DIC) to more challenging environments, a novel Scheimpflug camera-based stereo-DIC is developed for full-field 3D deformation measurement, wherein the Scheimpflug condition, consisting of tilting the sensor plane with respect to the lens plane for the sake of larger depth of field (DOF) of the camera, is employed. The geometric imaging model of the Scheimpflug camera is described, on the basis of which a robust and effective stepwise calibration strategy is performed to calculate the intrinsic and extrinsic parameters of the stereo Scheimpflug rig. With the aid of a specially tailored stereo triangulation method and well-developed subset-based DIC algorithms, the three-dimensional shape and displacement of the specimen can be retrieved. Finally, practical experiments, including rigid motion tests and three-point bending tests, demonstrate the effectiveness and accuracy of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document