Simulation investigation of tractive energy conservation for a cornering rear-wheel-independent-drive electric vehicle through torque vectoring

2017 ◽  
Vol 61 (2) ◽  
pp. 257-272 ◽  
Author(s):  
Wen Sun ◽  
JunNian Wang ◽  
QingNian Wang ◽  
Francis Assadian ◽  
Bo Fu
Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8143
Author(s):  
Junnian Wang ◽  
Siwen Lv ◽  
Nana Sun ◽  
Shoulin Gao ◽  
Wen Sun ◽  
...  

The anxiety of driving range and inconvenience of battery recharging has placed high requirements on the energy efficiency of electric vehicles. To reduce driving-wheel slip energy consumption while cornering, a torque vectoring control strategy for a rear-wheel independent-drive (RWID) electric vehicle is proposed. First, the longitudinal linear stiffness of each driving wheel is estimated by using the approach of recursive least squares. Then, an initial differential torque is calculated for reducing their overall tire slippage energy dissipation. However, before the differential torque is applied to the two side of driving wheels, an acceleration slip regulation (ASR) is introduced into the overall control strategy to avoid entering into the tire adhesion saturation region resulting in excessive slip. Finally, the simulations of typical manoeuvring conditions are performed to verify the veracity of the estimated tire longitudinal linear stiffness and effectiveness of the torque vectoring control strategy. As a result, the proposed torque vectoring control leads to the largest reduction of around 17% slip power consumption for the situations carried out above.


2016 ◽  
pp. 619-624 ◽  
Author(s):  
E.N. Smith ◽  
E. Velenis ◽  
D. Cao ◽  
D. Tavernini

2014 ◽  
Vol 47 (3) ◽  
pp. 12010-12015 ◽  
Author(s):  
Gerd Kaiser ◽  
Qin Liu ◽  
Christian Hoffmann ◽  
Matthias Korte ◽  
Herbert Werner

Author(s):  
Jonathan Nadeau ◽  
Philippe Micheau ◽  
Maxime Boisvert

Within the field of electric vehicles, the cooperative control of a dual electro-hydraulic regenerative brake system using the foot brake pedal as the sole input of driver brake requests is a challenging control problem, especially when the electro-hydraulic brake system features on/off solenoid valves which are widely used in the automotive industry. This type of hydraulic actuator is hard to use to perform a fine brake pressure regulation. Thus, this paper focuses on the implementation of a novel controller design for a dual electro-hydraulic regenerative brake system featuring on/off solenoid valves which track an “ideal” brake force distribution. As an improvement to a standard brake force distribution, it can provide the reach of the maximum braking adherence and can improve the energy recovery of a rear-wheel-drive electric vehicle. This improvement in energy recovery is possible with the complete substitution of the rear hydraulic brake force with a regenerative brake force until the reach of the electric powertrain constraints. It is done by performing a proper brake pressure fine regulation through the proposed variable structure control of the on/off solenoid valves provided by the hydraulic platform of the vehicle stability system. Through road tests, the tracking feasibility of the proposed brake force distribution with the mechatronic system developed is validated.


Sign in / Sign up

Export Citation Format

Share Document