Design of a central feedforward control of torque vectoring and rear-wheel steering to beneficially use tyre information

2019 ◽  
Vol 58 (12) ◽  
pp. 1789-1822
Author(s):  
Georg Warth ◽  
Michael Frey ◽  
Frank Gauterin
2019 ◽  
Vol 68 (1) ◽  
pp. 264-275 ◽  
Author(s):  
Georg Warth ◽  
Michael Frey ◽  
Frank Gauterin

Author(s):  
I-Ming Chen ◽  
Yuan-Yao Huang ◽  
Tai-Her Yang ◽  
Tyng Liu

This study investigates the limited-slip and steering characteristics of a dual continuously variable transmission system. The dual continuously variable transmission is a unique final drive system composed of two continuously variable transmissions, with one continuously variable transmission connected to each rear wheel. In this study, a dynamic model of the dual continuously variable transmission system is derived, and models of the conventional final drive systems, i.e. the solid axle and the open differential, are used as benchmarks. In the simulations, the dual continuously variable transmission model, the solid axle model and the open differential model are applied to a vehicle dynamic model for split- μ road tests and a series of steering tests. According to the results of the split- μ road tests, the limited-slip function of a dual continuously variable transmission system is verified. The results of the steering tests show that different torque distributions for the inside wheels and the outside wheels while cornering can be controlled with different gain values of the continuously variable transmissions; for this reason, the application of the dual continuously variable transmission system as a torque-vectoring device is proposed, and a basic setting principle is presented. The results of this study establish a fundamental knowledge for developing the dual continuously variable transmission as an advanced final system for improving the vehicle dynamics.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8143
Author(s):  
Junnian Wang ◽  
Siwen Lv ◽  
Nana Sun ◽  
Shoulin Gao ◽  
Wen Sun ◽  
...  

The anxiety of driving range and inconvenience of battery recharging has placed high requirements on the energy efficiency of electric vehicles. To reduce driving-wheel slip energy consumption while cornering, a torque vectoring control strategy for a rear-wheel independent-drive (RWID) electric vehicle is proposed. First, the longitudinal linear stiffness of each driving wheel is estimated by using the approach of recursive least squares. Then, an initial differential torque is calculated for reducing their overall tire slippage energy dissipation. However, before the differential torque is applied to the two side of driving wheels, an acceleration slip regulation (ASR) is introduced into the overall control strategy to avoid entering into the tire adhesion saturation region resulting in excessive slip. Finally, the simulations of typical manoeuvring conditions are performed to verify the veracity of the estimated tire longitudinal linear stiffness and effectiveness of the torque vectoring control strategy. As a result, the proposed torque vectoring control leads to the largest reduction of around 17% slip power consumption for the situations carried out above.


2018 ◽  
Author(s):  
Janaína R. Amaral ◽  
Harald Göllinger ◽  
Thiago A. Fiorentin

This paper presents a preliminary study on the use of reinforcement learning to control the torque vectoring of a small rear wheel driven electric race car in order to improve vehicle handling and vehicle stability. The reinforcement learning algorithm used is Neural Fitted Q Iteration and the sampling of experiences is based on simulations of the vehicle behavior using the software CarMaker. The cost function is based on the position of the states on the phase-plane of sideslip angle and sideslip angular velocity. The resulting controller is able to improve the vehicle handling and stability with a significant reduction in vehicle sideslip angle.


2020 ◽  
Vol 69 (4) ◽  
pp. 3805-3815 ◽  
Author(s):  
Zhongchao Liang ◽  
Jing Zhao ◽  
Zhen Dong ◽  
Yongfu Wang ◽  
Zhengtao Ding

Sign in / Sign up

Export Citation Format

Share Document