Principal component analysis and belief-rule-base aided health monitoring method for running gears of high-speed train

2020 ◽  
Vol 63 (9) ◽  
Author(s):  
Chao Cheng ◽  
Xinyu Qiao ◽  
Wanxiu Teng ◽  
Mingliang Gao ◽  
Bangcheng Zhang ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hao Wu ◽  
Bangcheng Zhang ◽  
Zhi Gao ◽  
Siyu Chen ◽  
Qianying Bu

Circuits are considered an important part of railway vehicles, and circuit fault diagnosis in the railway vehicle is also a research hotspot. In view of the nonlinearity and diversity of track circuit components, as well as the diversity and similarity of fault phenomena, in this paper, a new fault diagnosis model for circuits based on the principal component analysis (PCA) and the belief rule base (BRB) is proposed, which overcomes the shortcomings of the circuit fault diagnosis method based on data, model, and knowledge. In the proposed model, to simplify the model and improve the accuracy, PCA is used to reduce the dimension of the key fault features, and varimax rotation is used to deduce the fault features. BRB is used to combine qualitative knowledge and quantitative data effectively, and evidential reasoning (ER) algorithm is used to carry out the inference of knowledge. The initial parameters of the model are optimized, and the optimal precondition attributes, rule weights, and belief degree parameters are obtained to improve the accuracy. Through the training and testing of the model, the experimental results show that the method can accurately diagnose the fault of the driver controller potentiometer in the railway vehicle. Compared with other methods, the model shows high accuracy.


Author(s):  
MIYOKO NAKANO ◽  
FUMIKO YASUKATA ◽  
MINORU FUKUMI

Research on "man-machine interface" has increased in many fields of engineering and its application to facial expressions recognition is expected. The eigenface method by using the principal component analysis (PCA) is popular in this research field. However, it is not easy to compute eigenvectors with a large matrix if the cost of calculation when applying it for time-varying processing is taken into consideration. In this paper, in order to achieve high-speed PCA, the simple principal component analysis (SPCA) is applied to compress the dimensionality of portions that constitute a face. A value of cos θ is calculated using an eigenvector by SPCA as well as a gray-scale image vector of each picture pattern. By using neural networks (NNs), the difference in the value of cos θ between the true and the false (plastic) smiles is clarified and the true smile is discriminated. Finally, in order to show the effectiveness of the proposed face classification method for true or false smiles, computer simulations are done with real images. Furthermore, an experiment using the self-organisation map (SOM) is also conducted as a comparison.


2017 ◽  
Vol 38 (10) ◽  
pp. 735-740 ◽  
Author(s):  
Daniel Weaving ◽  
Ben Jones ◽  
Phil Marshall ◽  
Kevin Till ◽  
Grant Abt

AbstractThis study aims to investigate the effect of training mode (conditioning and skills) on multivariate training load relationships in professional rugby league via principal component analysis. Four measures of training load (internal: heart rate exertion index, session rating of perceived exertion; external: PlayerLoad™, individualised high-speed distance) were collected from 23 professional male rugby league players over the course of one 12 wk preseason period. Training was categorised by mode (skills or conditioning) and then subjected to a principal component analysis. Extraction criteria were set at an eigenvalue of greater than 1. Modes that extracted more than 1 principal component were subject to a varimax rotation. Skills extracted 1 principal component, explaining 57% of the variance. Conditioning extracted 2 principal components (1st: internal; 2nd: external), explaining 85% of the variance. The presence of multiple training load dimensions (principal components) during conditioning training provides further evidence of the influence of training mode on the ability of individual measures of external or internal training load to capture training variance. Consequently, a combination of internal and external training-load measures is required during certain training modes.


Sign in / Sign up

Export Citation Format

Share Document