bipartite state
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

Physics ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 383-396
Author(s):  
Chu-Ryang Wie

Three unit spheres were used to represent the two-qubit pure states. The three spheres are named the base sphere, entanglement sphere, and fiber sphere. The base sphere and entanglement sphere represent the reduced density matrix of the base qubit and the non-local entanglement measure, concurrence, while the fiber sphere represents the fiber qubit via a simple rotation under a local single-qubit unitary operation; however, in an entangled bipartite state, the fiber sphere has no information on the reduced density matrix of the fiber qubit. When the bipartite state becomes separable, the base and fiber spheres seamlessly become the single-qubit Bloch spheres of each qubit. Since either qubit can be chosen as the base qubit, two alternative sets of these three spheres are available, where each set fully represents the bipartite pure state, and each set has information of the reduced density matrix of its base qubit. Comparing this model to the two Bloch balls representing the reduced density matrices of the two qubits, each Bloch ball corresponds to two unit spheres in our model, namely, the base and entanglement spheres. The concurrence–coherence complementarity is explicitly shown on the entanglement sphere via a single angle.


Quantum ◽  
2019 ◽  
Vol 3 ◽  
pp. 158 ◽  
Author(s):  
Alexander Wilce

The Jordan structure of finite-dimensional quantum theory is derived, in a conspicuously easy way, from a few simple postulates concerning abstract probabilistic models (each defined by a set of basic measurements and a convex set of states). The key assumption is that each system A can be paired with an isomorphic conjugate system, A¯, by means of a non-signaling bipartite state ηA perfectly and uniformly correlating each basic measurement on A with its counterpart on A¯. In the case of a quantum-mechanical system associated with a complex Hilbert space H, the conjugate system is that associated with the conjugate Hilbert space H, and ηA corresponds to the standard maximally entangled EPR state on H⊗H¯. A second ingredient is the notion of a reversible filter, that is, a probabilistically reversible process that independently attenuates the sensitivity of detectors associated with a measurement. In addition to offering more flexibility than most existing reconstructions of finite-dimensional quantum theory, the approach taken here has the advantage of not relying on any form of the ``no restriction" hypothesis. That is, it is not assumed that arbitrary effects are physically measurable, nor that arbitrary families of physically measurable effects summing to the unit effect, represent physically accessible observables. (An appendix shows how a version of Hardy's ``subpace axiom" can replace several assumptions native to this paper, although at the cost of disallowing superselection rules.)


2018 ◽  
Vol 17 (03) ◽  
pp. 1850023 ◽  
Author(s):  
Mahmood Shamirzaie ◽  
Salman Khan

The dynamics of three different entropic measures of quantum correlations in mixed bipartite qubit states in the presence of two different classical noises, the static noise (SN) and the random telegraph noise (RTN), are investigated. The three entropic measures of quantum correlations correspond to one-way information deficit, geometric quantum discord and the cubic information. General analytic relations for each quantifier in the two configurations are obtained. In both configurations, the minimized value of each measure of quantum correlations corresponds to the conditional entropy of the same projectors. It is shown that one-way information deficit captures more correlations in highly mixed initial states. On the contrary, in both configurations the cubic information reduces to the geometric quantum discord and captures more correlations for highly pure initial states. The periodic revival of each measure of quantum correlation is more prominent in the case of RTN.


Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 81 ◽  
Author(s):  
Gilad Gour ◽  
Yu Guo

We provide a fine-grained definition for monogamous measure of entanglement that does not invoke any particular monogamy relation. Our definition is given in terms an equality, as oppose to inequality, that we call the "disentangling condition". We relate our definition to the more traditional one, by showing that it generates standard monogamy relations. We then show that all quantum Markov states satisfy the disentangling condition for any entanglement monotone. In addition, we demonstrate that entanglement monotones that are given in terms of a convex roof extension are monogamous if they are monogamous on pure states, and show that for any quantum state that satisfies the disentangling condition, its entanglement of formation equals the entanglement of assistance. We characterize all bipartite mixed states with this property, and use it to show that the G-concurrence is monogamous. In the case of two qubits, we show that the equality between entanglement of formation and assistance holds if and only if the state is a rank 2 bipartite state that can be expressed as the marginal of a pure 3-qubit state in the W class.


2018 ◽  
Vol 16 (03) ◽  
pp. 1850022 ◽  
Author(s):  
Juju Hu ◽  
Shuqin Liu ◽  
Yinghua Ji

In order to measure the quantum correlation of a bipartite state quickly, an easy method is to construct a test matrix through the commutations among the blocks of its density matrix. Then, the Frobenius norm of the test matrix can be used to measure the quantum correlation. In this paper, we apply the measurement by Frobenius norm ([Formula: see text] to the dynamics evolution of the non-Markovian quantum system and compare it with the typical quantum discord ([Formula: see text] proposed by Ollivier and Zurek. The research results show that [Formula: see text] can indeed measure the quantum correlation of a bipartite state as same as [Formula: see text]. Further studies find that there are still differences between the two measurements: in some regions, when [Formula: see text] is zero, [Formula: see text] is not zero. It indicates that [Formula: see text] is more detailed than [Formula: see text] to measure quantum correlation of a bipartite state.


2018 ◽  
Vol 34 ◽  
pp. 331-342
Author(s):  
Chi-Kwong Li ◽  
Yiu-Tung Poon ◽  
Xuefeng Wang

Let $\cM_n$ be the set of $n\times n$ complex matrices. In this note, all the possible ranks of a bipartite state in $\cM_m\otimes \cM_n$ with prescribed reduced states in the two subsystems, are determined. The results are used to determine the Choi rank of quantum channels $\Phi: \cM_m \rightarrow \cM_n$ sending $I/m$ to a specific state $\sigma_2 \in \cM_n$.


Quanta ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 19
Author(s):  
Fedor Herbut

An elaborated review with proofs of Schmidt canonical decomposition of any bipartite state vector is approached through general subsystem basis expansion. The upgraded forms of Schmidt decomposition in terms of correlation operator and twin observables are presented in detail. The discussion is extended to distant measurement, Einstein–Podolsky–Rosen states and Schrödinger's steering. All claims and proofs are given in standard form unlike in the previous articles of the author where all results were obtained utilizing the very rarely used antilinear Hilbert–Schmidt maps of one subsystem state space into the other. For practical reasons the formalism of partial traces with their rules and reduced density operators together with correlation operator are used.Quanta 2018; 7: 19–39.


Sign in / Sign up

Export Citation Format

Share Document