spin coherent states
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 18)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Xiaoyan Zhang ◽  
Jisuo Wang ◽  
Lei Wang ◽  
Xiangguo Meng ◽  
Baolong Liang

Abstract Two new photon-modulated spin coherent states (SCSs) are introduced by operating the spin ladder operators J ± on the ordinary SCS in the Holstein-Primakoff realization and the nonclassicality is exhibited via their photon number distribution, second-order correlation function, photocount distribution and negativity of Wigner distribution. Analytical results show that the photocount distribution is a Bernoulli distribution and the Wigner functions are only associated with two-variable Hermite polynomials. Compared with the ordinary SCS, the photon-modulated SCSs exhibit more stronger nonclassicality in certain regions of the photon modulated number k and spin number j, which means that the nonclassicality can be enhanced by selecting suitable parameters.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dylan Durieux ◽  
Willi-Hans Steeb

Abstract We investigate spin Hamilton operators and compare spin coherent states and Bell states concerning entanglement, Husimi distributions, uncertainty relation and Bell inequality. The distances between spin coherent states and Bell states are derived. The Rayleigh quotients of spin Hamilton operators for spin coherent states and Bell states are evaluated and compared.


Author(s):  
Richard Birrittella Jr. ◽  
Jason Ziskind ◽  
Edwin Hach ◽  
Paul Alsing ◽  
Christopher Gerry

Author(s):  
A. Sbiri ◽  
M. Mansour ◽  
Y. Oulouda

We investigate the pairwise quantum correlations in standard Gisin states and in Gisin states based on bipartite spin-coherent states by employing quantum negativity and quantum local uncertainty as bona fide quantum correlations measures. Gisin states are defined as mixtures of separable mixed states and some pure entangled ones. We compare the behavior of the two quantifiers of Gisin states and we find that both measures exhibit a sudden change in terms of the mixing parameter. Furthermore, we show that entangled Gisin states contain nonclassical correlations that are captured by the local quantum uncertainty and cannot be revealed by the negativity quantifier.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Sayed Abdel-Khalek ◽  
Kamal Berrada ◽  
Eied M. Khalil ◽  
Fadhel Almalki

In the present paper, we examine the quantum entanglement for more general states of two-qubit system in the context of spin coherent states (SCSs). We consider the concurrence as a quantifier of entanglement and express it in terms of SCSs. We determine new set of maximally entangled conditions that provide the maximal amount of entanglement for certain values of the amplitudes of SCSs for the case of pure states. Finally, we examine the entanglement of a class of mixed states of the two qubits and provide the range in which the entanglement value is maximal with respect to the values of the amplitudes of SCSs.


2021 ◽  
Vol 11 (1) ◽  
pp. 408
Author(s):  
Sayed Abdel-Khalek ◽  
Kamal Berrada ◽  
Abeer S. Altowyan

We propose a new kind of Schrödinger cat state introduced as a superposition of spin coherent states in the framework of noncommutative spaces. We analyze the nonclassical features for these noncommutative deformed states in terms of the main physical parameters. The physical importance of deformed states is that they provide a convenient description of a large set of laser systems. As an application, we develop the Jaynes–Cummings model by considering the interaction among atoms and cat state fields associated to deformed spin algebras. In this context, we show the dynamical behavior of the nonlocal correlation and nonclassical properties in these quantum systems.


Sign in / Sign up

Export Citation Format

Share Document