scholarly journals Cosmological parameter measurement and neutral hydrogen 21 cm sky survey with the Square Kilometre Array

Author(s):  
YiDong Xu ◽  
Xin Zhang
2012 ◽  
Vol 29 (2) ◽  
pp. 202-211 ◽  
Author(s):  
A. R. Duffy ◽  
A. Moss ◽  
L. Staveley-Smith

AbstractThis is a design study into the capabilities of the Australian Square Kilometre Array Pathfinder in performing a full-sky low redshift neutral hydrogen survey, termed WALLABY, and the potential cosmological constraints one can attain from measurement of the galaxy power spectrum. We find that the full sky survey will likely attain 6 × 105 redshifts which, when combined with expected Planck CMB data, will constrain the Dark Energy equation of state to 20%, representing a coming of age for radio observations in creating cosmological constraints.


1997 ◽  
Vol 161 ◽  
pp. 611-621
Author(s):  
Guillermo A. Lemarchand ◽  
Fernando R. Colomb ◽  
E. Eduardo Hurrell ◽  
Juan Carlos Olalde

AbstractProject META II, a full sky survey for artificial narrow-band signals, has been conducted from one of the two 30-m radiotelescopes of the Instituto Argentino de Radioastronomía (IAR). The search was performed near the 1420 Mhz line of neutral hydrogen, using a 8.4 million channels Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earths rotation, which provides a characteristic changing signature for narrow-band signals of extraterrestrial origin. Among the 2 × 1013spectral channels analyzed, 29 extra-statistical narrow-band events were found, exceeding the average threshold of 1.7 × 10−23Wm−2. The strongest signals that survive culling for terrestrial interference lie in or near the galactic plane. A description of the project META II observing scheme and results is made as well as the possible interpretation of the results using the Cordes-Lazio-Sagan model based in interstellar scattering theory.


1984 ◽  
Vol 81 ◽  
pp. 204-210
Author(s):  
George W. Clark

Comparison of the SAS-3 soft X-ray sky survey (F. Marshall and G. Clark 1984) with the 21-cm neutral hydrogen survey of Stark et al. (1984) confirms the well-known anticorrelation between the counting rates in the C-band (0.10-0.28 keV) and the column density of neutral hydrogen, and demonstrates that this anticorrelation is significant on all angular scales ranging from that of the general trend from the galactic equator to the poles down to the angular resolution of the detector (2°.7 FWHM). Included in this general anticorrelation are numerous instances of what appear to be soft X-ray “shadows” of nearby (100-300 pc) 21-cm features, and several bright X-ray regions coincident with “holes” in the ISM.


1999 ◽  
Vol 171 ◽  
pp. 204-206
Author(s):  
Virginia Kilborn ◽  
Erwin de Blok ◽  
Lister Staveley-Smith ◽  
Rachel Webster

AbstractThe low surface brightness galaxy HIPASS1126-72 was detected in the HI Parkes All Sky Survey (HIPASS). The galaxy was previously listed in the Southern Galaxy Catalogue under the name SGC1124.87221. This galaxy represents a class of galaxies that we will readily detect in the HIPASS survey, which have low surface brightness in the optical, but are easily detectable in neutral hydrogen.


2015 ◽  
Author(s):  
Yougang Wang ◽  
Yidong Xu ◽  
Fengquan Wu ◽  
Xuelei Chen ◽  
Xin Wang ◽  
...  

Author(s):  
Jamie Farnes ◽  
Ben Mort ◽  
Fred Dulwich ◽  
Stef Salvini ◽  
Wes Armour

The Square Kilometre Array (SKA) will be both the largest radio telescope ever constructed and the largest Big Data project in the known Universe. The first phase of the project will generate on the order of 5 zettabytes of data per year. A critical task for the SKA will be its ability to process data for science, which will need to be conducted by science pipelines. Together with polarization data from the LOFAR Multifrequency Snapshot Sky Survey (MSSS), we have been developing a realistic SKA-like science pipeline that can handle the large data volumes generated by LOFAR at 150 MHz. The pipeline uses task-based parallelism to image, detect sources, and perform Faraday Tomography across the entire LOFAR sky. The project thereby provides a unique opportunity to contribute to the technological development of the SKA telescope, while simultaneously enabling cutting-edge scientific results. In this paper, we provide an update on current efforts to develop a science pipeline that can enable tight constraints on the magnetised large-scale structure of the Universe.


2020 ◽  
Vol 498 (2) ◽  
pp. 1951-1962
Author(s):  
Michele Fumagalli ◽  
Sotiria Fotopoulou ◽  
Laura Thomson

ABSTRACT We present a pipeline based on a random forest classifier for the identification of high column density clouds of neutral hydrogen (i.e. the Lyman limit systems, LLSs) in absorption within large spectroscopic surveys of z ≳ 3 quasars. We test the performance of this method on mock quasar spectra that reproduce the expected data quality of the Dark Energy Spectroscopic Instrument and the WHT (William Herschel Telescope) Enhanced Area Velocity Explorer surveys, finding ${\gtrsim}90{{\ \rm per\ cent}}$ completeness and purity for $N_{\rm H\,\rm{\small I}} \gtrsim 10^{17.2}~\rm cm^{-2}$ LLSs against quasars of g < 23 mag at z ≈ 3.5–3.7. After training and applying our method on 10 000 quasar spectra at z ≈ 3.5–4.0 from the Sloan Digital Sky Survey (Data Release 16), we identify ≈6600 LLSs with $N_{\rm H\,\rm{\small I}} \gtrsim 10^{17.5}~\rm cm^{-2}$ between z ≈ 3.1 and 4.0 with a completeness and purity of ${\gtrsim}90{{\ \rm per\ cent}}$ for the classification of LLSs. Using this sample, we measure a number of LLSs per unit redshift of ℓ(z) = 2.32 ± 0.08 at z = [3.3, 3.6]. We also present results on the performance of random forest for the measurement of the LLS redshifts and H i column densities, and for the identification of broad absorption line quasars.


1970 ◽  
Vol 38 ◽  
pp. 157-163
Author(s):  
D. Goniadzki ◽  
A. Jech

A sky survey of the 21 cm hydrogen line has been made with the 100-foot Radiotelescope of the I.A.R.-C.I.W. Radio Astronomy Station in the region 230° ≤ lII ≤ 280°, −15° ≤ bII ≤ −3°.We study the distribution of the local hydrogen and that in the Orion, Intermediate and Perseus arms. We find a new structure that starts at lII = 265°. We also study the concentrations which lie far below the plane; some of them seem to be related to Lindblad's G arm.


2019 ◽  
Vol 489 (2) ◽  
pp. 1619-1632 ◽  
Author(s):  
Wenkai Hu ◽  
Laura Hoppmann ◽  
Lister Staveley-Smith ◽  
Katinka Geréb ◽  
Tom Oosterloo ◽  
...  

ABSTRACT Using a spectral stacking technique, we measure the neutral hydrogen (H i) properties of a sample of galaxies at z < 0.11 across 35 pointings of the Westerbork Synthesis Radio Telescope. The radio data contain 1895 galaxies with redshifts and positions known from the Sloan Digital Sky Survey. We carefully quantified the effects of sample bias, aperture used to extract spectra, sidelobes and weighting technique and use our data to provide a new estimate for the cosmic H i mass density. We find a cosmic H i mass density of $\Omega _{\rm H\,{\small I}} = (4.02 \pm 0.26)\times 10^{-4} h_{70}^{-1}$ at 〈z〉 = 0.066, consistent with measurements from blind H i surveys and other H i stacking experiments at low redshifts. The combination of the small interferometer beam size and the large survey volume makes our result highly robust against systematic effects due to confusion at small scales and cosmic variance at large scales. Splitting into three sub-samples with 〈z〉 = 0.038, 0.067, and 0.093 shows no significant evolution of the H i gas content at low redshift.


Sign in / Sign up

Export Citation Format

Share Document