Gas in Scattering Media Absorption Spectroscopy (GASMAS) Detected Persistent Vacuum in Apple Tissue After Vacuum Impregnation

2011 ◽  
Vol 7 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Urszula Tylewicz ◽  
Patrik Lundin ◽  
Lorenzo Cocola ◽  
Katarzyna Dymek ◽  
Pietro Rocculi ◽  
...  
2020 ◽  
Vol 126 (4) ◽  
Author(s):  
Ahmed Al-Saudi ◽  
Abdulaziz Aljalal ◽  
Watheq Al-Basheer ◽  
Khaled Gasmi ◽  
Samer Qari

Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3533 ◽  
Author(s):  
Marta Pasławska ◽  
Bogdan Stępień ◽  
Agnieszka Nawirska-Olszańska ◽  
Kinga Sala

The purpose of the study was to evaluate the efficiency of mass transfer during vacuum impregnation (VI) of apple tissue by different process conditions. VI was carried out in two stages: Vacuum (4, 6, or 8 kPa maintained at time 10, 20, 30, 40, 60, and 80 s) and atmospheric (4 min under atmospheric pressure). As infiltration liquids, fresh squeezed apple-pear juice (J), 3% citric acid solution (C), and distilled water (DW) were used. Mass transfer was analyzed based on three factors: Mass variation (MV), dry mass variation (DMV), and solid gain (SG). The outflow of native components and inflow of infiltration liquid has been described by mathematical models. The polyphenol content and antioxidant capacity (ABTS+, FRAP) were evaluated as the bioactive potential factors confirming native component outflow and incorporation of liquid molecules into an apple tissue. It was found that during VI of an apple tissue, intensive mass transfer occurred: Native components of fruit tissue outflowed and external ingredients of impregnation liquid inflowed into the material with the intensity proportional to the vacuum level and process time. The most beneficial conditions of apple cube VI were noticed at a vacuum level of 4 kPa for a minimum of 40 s, which is when the highest polyphenol content and antioxidant capacity occurred.


2021 ◽  
Vol 173 ◽  
pp. 111405
Author(s):  
Manju Joseph ◽  
Robbe Van Beers ◽  
Annelies Postelmans ◽  
Bart Nicolai ◽  
Wouter Saeys

Sensors ◽  
2014 ◽  
Vol 14 (3) ◽  
pp. 3871-3890 ◽  
Author(s):  
Liang Mei ◽  
Gabriel Somesfalean ◽  
Sune Svanberg

Sign in / Sign up

Export Citation Format

Share Document