Food Biophysics
Latest Publications


TOTAL DOCUMENTS

700
(FIVE YEARS 143)

H-INDEX

47
(FIVE YEARS 5)

Published By Springer-Verlag

1557-1866, 1557-1858

2022 ◽  
Author(s):  
Pranita Mhaske ◽  
Stefan Kasapis ◽  
Asgar Farahnaky ◽  
Mina Dokouhaki

AbstractThere is an increasing demand for the design of complex bio-composites with customized structural characteristics for use in processed food products. Phase behaviour of these mixtures determines textural properties, encouraging the pursue of a rapid technique that can accurately quantify it. The present work tests the efficacy of confocal laser scanning microscopy (CLSM) coupled with image analysis software (Imaris), for the quantification of phase behaviour in complex tertiary systems. In doing so, it develops phase separated gels of agarose and gelatin supporting inclusions of canola oil. The polysaccharide was replaced with whey protein isolate (WPI) and the topology of the tertiary dispersion with gelatin and canola oil was also examined. Reproducible phase volume estimates were obtained, including those of the lipid phase, which were a close match to the actual concentrations added to the hydrocolloid gel. The approach could offer an alternative to the rheological estimation, via theoretical blending law analysis, of phase volumes in bio-composites. Graphical Abstract


2021 ◽  
Author(s):  
Yeong Zen Chua ◽  
Hoang Tam Do ◽  
Aarti Kumar ◽  
Moritz Hallermann ◽  
Dzmitry Zaitsau ◽  
...  

Abstract Saccharides are still commonly isolated from biological feedstock by crystallization from aqueous solutions. Precise thermodynamic data on solubility are essential to optimize the downstream crystallization process. Solubility modeling, in turn, requires knowledge of melting properties. In the first part of this work, following our previous work on amino acids and peptides, D-α-glucose, D-β-fructose, D-sucrose, D-α-galactose, and D-α-xylose were investigated with Fast Scanning Calorimetry (FSC) in a wide scanning rate range (2000 K·s−1 to 10000 K·s−1). Using the experimental melting properties of saccharides from FSC allowed successfully modeling aqueous solubility for D-sucrose and D-α-galactose with the equation of state PC-SAFT. This provides cross-validation of the measurement methods to determine accurate experimental melting properties with FSC. Unexpectedly, the experimental FSC melting temperatures, extrapolated to zero scanning rates for thermal lag correction, were higher than results determined with DSC and available literature data. To clarify this inconsistency, FSC measurements towards low scanning rates from 10000 K·s−1 to 1 K·s−1 (D-α-glucose, D-β-fructose, D-sucrose) overlapping with the scanning rates of DSC and literature data were combined. At scanning rates below 1000 K·s−1, the melting properties followed a consistent non-linear trend, observed in both the FSC and the literature data. In order to understand the non-linear decrease of apparent melting temperatures with decreasing heating rate, the endothermic peaks were investigated in terms of isoconversional kinetics. The activation energies in the non-linear dependency region are in the range of $$300<{E}_{A}< 600 {\text{kJ}}\bullet {\text{mo}}{\text{l}}^{-1}$$ 300 < E A < 600 kJ ∙ mol - 1 . These values are higher than the enthalpy of sublimation for D-α-glucose, indicating that the non-linear behavior does not have a physical nature but attributes to chemical processes corresponding to the decomposition of molecular compounds within the crystal lattice before melting. The melting properties reported in the literature, commonly determined with conventional methods such as DSC, lead to inaccurate results due to the decomposition of these biomolecules at low heating rates. In addition, the FSC results at lower scanning rates coincide with results from DSC and literature in the overlapping scanning rate range, further validating the accuracy of FSC measurements to determine reliable melting properties of thermally labile biomolecules. The experimental FSC melting properties determined at higher scanning rates are considered as the correct equilibrium melting properties, which are not influenced by any chemical processes. The combination of FSC and PC-SAFT opens the door to model solubility of solid compounds that commonly decompose before melting.


2021 ◽  
Author(s):  
Theresia Heiden-Hecht ◽  
Stephan Drusch

AbstractOil in water emulsions are commonly stabilized by emulsifying constituents like proteins and/or low molecular weight emulsifiers. The emulsifying constituents can compete or coexist at the interface. Interfacial properties thus depend on molecular structure of the emulsifying constituents and the oil phase and the resulting molecular interactions. The present study systematically analyzed the impact of fatty acid saturation of triacylglycerides and phosphatidylcholine on the interfacial properties of a β-lactoglobulin-stabilized interface. The long-term adsorption behaviour and the viscoelasticity of β-lactoglobulin-films were analyzed with or without addition of phosphatidylcholine via drop tensiometry and dilatational rheology. Results from the present study showed that increasing similarity in fatty acid saturation and thus interaction of phosphatidylcholine and oil phase increased the interfacial tension for the phosphatidylcholine alone or in combination with β-lactoglobulin. The characteristics and stability of interfacial films with β-lactoglobulin-phosphatidylcholine are further affected by interfacial adsorption during changes in interfacial area and crystallization events of low molecular weight emulsifiers. This knowledge gives guidance for improving physical stability of protein-based emulsions in foods and related areas. Graphic abstract


2021 ◽  
Author(s):  
Li Zhang ◽  
Yuqin Chen ◽  
Jiacheng Zeng ◽  
Jianwei Zang ◽  
Qi Liang ◽  
...  

2021 ◽  
Author(s):  
April X. Xu ◽  
Elizabeth A. L. West ◽  
Pedram Nasr ◽  
Zhitong Zhou ◽  
Maria G. Corradini ◽  
...  

2021 ◽  
Author(s):  
Ziying Liao ◽  
Shenglan Guo ◽  
Muwen Lu ◽  
Jie Xiao ◽  
Yong Cao ◽  
...  

2021 ◽  
Author(s):  
Naiyan Lu ◽  
Zhe Chen ◽  
Jiaoyang Song ◽  
Yuyan Weng ◽  
Guofeng Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document