Nuclear transfer of goat somatic cells transgenic for human lactoferrin gene

2008 ◽  
Vol 3 (3) ◽  
pp. 269-274
Author(s):  
Lan Li ◽  
Wei Shen ◽  
Lingjiang Min ◽  
Qingyu Pan ◽  
Yujiang Sun ◽  
...  
Primates ◽  
2007 ◽  
Vol 48 (3) ◽  
pp. 232-240 ◽  
Author(s):  
Junko Okahara-Narita ◽  
Hideaki Tsuchiya ◽  
Tatsuyuki Takada ◽  
Ryuzo Torii

2003 ◽  
Vol 191 (2) ◽  
pp. 155-164 ◽  
Author(s):  
Ying Yang ◽  
Jingfeng Li ◽  
Anna Szeles ◽  
Marta P Imreh ◽  
Maria Kost-Alimova ◽  
...  

2002 ◽  
Vol 20 (4) ◽  
pp. 366-369 ◽  
Author(s):  
Patrick Chesné ◽  
Pierre G. Adenot ◽  
Céline Viglietta ◽  
Michel Baratte ◽  
Laurent Boulanger ◽  
...  

1970 ◽  
Vol 176 (1044) ◽  
pp. 303-314 ◽  

The transplantation of nuclei from differentiated or determined somatic cells to enucleated frogs’ eggs consistently leads to a complete and clearly recognizable change of gene activity. Within 1 to 2 h of nuclear transfer, somatic nuclei have come to resemble in structure and metabolism the zygote nuclei of fertilized eggs. The change in gene activity therefore takes place very soon after nuclear transfer and results from an effect of egg cytoplasm. The induced change in gene activity is associated with a selective accumulation of cytoplasmic proteins in transplanted nuclei. Examples are given of various ways in which nuclear transplantation and microinjection can be used to elucidate the intracellular movement of proteins and the effect of known protein fractions on gene activity.


2004 ◽  
Vol 16 (2) ◽  
pp. 150 ◽  
Author(s):  
M. Matshikiza ◽  
P. Bartels ◽  
G. Vajta ◽  
F. Olivier ◽  
T. Spies ◽  
...  

Wildlife conservation requires traditional as well as innovative conservation strategies in order to preserve gene and species diversity. Interspecies nuclear transfer has the potential to conserve genes from critically endangered wildlife species where few or no oocytes are available from the endangered species, and where representative cell lines have been established for the wildlife population while numbers were still abundant. The purpose of this study was to investigate the developmental ability of embryos reconstructed with transfer of somatic cells from the African buffalo (Syncerus caffer), bontebok (Damaliscus dorcus dorcus) and eland (Taurotragus oryx) to enucleated domestic cattle (Bos taurus) oocytes. Skin tissue from the three wildlife species were collected by surgically removing approx. 1.0×1.0cm ear skin notches from animals immobilized with a combination of etorphine hydrochloride (M99; South Africa) and azaperone (Stressnil, South Africa). The biopsies were placed into physiological saline and transported to the laboratory at 4°C within 2h, cleaned with chlorohexidine gluconate and sliced finely in Minimal Essential Medium supplemented with 10% fetal calf serum. The resultant tissue explants were treated as previously described (Baumgarten and Harley 1995 Comp. Biochem. Physiol. 110B, 37–46) and actively growing fibroblast cultures made available for the nuclear transfer process. Nuclear transfer was performed using the HMC technique (Vajta et al., 2003 Biol. Reprod. 68, 571–578) using slaughterhouse-derived bovine oocytes. Culture was performed in SOFaaci (Vajta et al., 2003 Biol. Reprod. 68, 571–578) medium supplemented with 5% cattle serum using WOWs (Vajta et al., Mol. Reprod. Dev. 50, 185–191). Two identical replicates were made with somatic cells of each species. After successful reconstruction, 57, 42 and 48 nuclear transferred and activated buffalo, bontebok and eland embryos were cultured, respectively. All except for 2 buffalo embryos cleaved; 22 (39%) developed to or over the 8-cell stage, and 2 (3.5%) of them to the blastocyst stage. All but 3 bontebok embryos cleaved, 17 (40%) developed to or over the 8-cell stage, but none of them reached the compacted morula or blastocyst stage. Sixteen (33%) of the eland embryos developed to or over the 8-cell stage with one (2%) reaching the blastocyst stage. In conclusion, buffalo, bontebok and eland embryos developed from reconstruction using their respective somatic cells combined with bovine cytoplasts, however, in vitro developmental ability to the blastocyst stage was limited. Additional basic research that establishes the regulative mechanisms involved with early preimplantation development together with optimising nuclear transfer techniques may have the potential to one day play a role in the conservation of critically endangered wildlife species.


Nature ◽  
2000 ◽  
Vol 408 (6808) ◽  
pp. 120-120 ◽  
Author(s):  
K. J. McCreath ◽  
J. Howcroft ◽  
K. H. S. Campbell ◽  
A. Colman ◽  
A. E. Schnieke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document