genetically modified
Recently Published Documents


TOTAL DOCUMENTS

8510
(FIVE YEARS 1348)

H-INDEX

122
(FIVE YEARS 13)

2022 ◽  
Vol 12 ◽  
Author(s):  
Etelka Pöstyéni ◽  
Alma Ganczer ◽  
Andrea Kovács-Valasek ◽  
Robert Gabriel

The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.


Author(s):  
Ke Chen ◽  
Hanzheng Chen ◽  
Hui Gao ◽  
Wei Zhou ◽  
Shicong Zheng ◽  
...  

Abstract Due to the lack of blood vessels, nerves and lymphatics, articular cartilage is difficult to repair once damaged. Tissue engineering is considered to be a potential strategy for cartilage regeneration. Successful tissue engineering strategies depend on the effective combination of biomaterials, seed cells and biological factors. In our previous study, a genetically modified coculture system with chondrocytes and ATDC5 cells in an alginate hydrogel has exhibited a superior ability to enhance chondrogenesis. In this study, we further evaluated the influence of chondrocytes at various passages on chondrogenesis in the coculture system. The results demonstrated that transfection efficiency was hardly influenced by the passage of chondrocytes. The coculture system with passage 5 (P5) chondrocytes had a better effect on chondrogenesis of ATDC 5 cells, while chondrocytes in this coculture system presented higher levels of dedifferentiation than other groups with P1 or P3 chondrocytes. Therefore, P5 chondrocytes were shown to be more suitable for the coculture system, as they accumulated in sufficient cell numbers with more passages and had a higher level of dedifferentiation, which was prone to form a favorable niche for chondrogenesis of ATDC5 cells. This study may provide fresh insights for future cartilage tissue engineering strategies with a combination of a coculture system and advanced biomaterials.


2022 ◽  
Vol 12 ◽  
Author(s):  
Alexander Suvorov ◽  
Tatiana Gupalova ◽  
Yulia Desheva ◽  
Tatiana Kramskaya ◽  
Elena Bormotova ◽  
...  

Contemporary SARS-Cov-2 pandemic, besides its dramatic global influence on the human race including health care systems, economies, and political decisions, opened a window for the global experiment with human vaccination employing novel injectable vaccines providing predominantly specific IgG response with little knowledge of their impact on the mucosal immunity. However, it is widely accepted that protection against the pathogens at the gates of the infection - on mucosal surfaces—predominantly rely on an IgA response. Some genetically modified bacteria, including probiotics, represent attractive vehicles for oral or nasal mucosal delivery of therapeutic molecules. Probiotic-based vaccines for mucous membranes are easy to produce in large quantities; they have low cost, provide quite a long T-cell memory, and gut IgA response to oral vaccines is highly synchronized and strongly oligoclonal. Here we present a study demonstrating construction of the novel SARS-Cov-2 vaccine candidate employing the gene fragment of S1 SARS-Cov-2 gene. This DNA fragment was inserted in frame into major pili protein gene with d2 domain of enterococcal operon encoding for pili. The DNA sequencing proved the presence of the insert in enterococcal genome. RNA transcription, immunoprecipitation, and immune electron microscopy with human sera obtained from the SARS-Cov-2 patients demonstrated expression of SARS-Cov-2 antigens in bacteria. Taken together the data obtained allowed considering this genetically modified probiotic strain as an interesting candidate for vaccine against SARS-Cov-2.


2022 ◽  
pp. 13-23
Author(s):  
K.B. Arun ◽  
Aravind Madhavan ◽  
Shibitha Emmanual ◽  
Raveendran Sindhu ◽  
Parameswaran Binod ◽  
...  

2022 ◽  
pp. 264-271
Author(s):  
Graham Matthews

Abstract This chapter focuses on different management practices in growing cotton, including the use of genetically modified varieties, pesticide application, crop rotation, spacing, irrigation, weed control, integrated pest management and organic farming.


2022 ◽  
pp. 363-393
Author(s):  
Charles Oluwaseun Adetunji ◽  
Osikemekha Anthony Anani ◽  
Olugbemi Tope Olaniyan ◽  
Ruth Ebunoluwa Bodunrinde ◽  
Osarenkhoe O. Osemwegie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document