Automatic measurement plane placement for 4D Flow MRI of the great vessels using deep learning

Author(s):  
Philip A. Corrado ◽  
Daniel P. Seiter ◽  
Oliver Wieben
Radiology ◽  
2021 ◽  
Author(s):  
Sophie You ◽  
Evan M. Masutani ◽  
Marcus T. Alley ◽  
Shreyas S. Vasanawala ◽  
Pam R. Taub ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Edward Ferdian ◽  
Avan Suinesiaputra ◽  
David J. Dubowitz ◽  
Debbie Zhao ◽  
Alan Wang ◽  
...  

2020 ◽  
Vol 84 (4) ◽  
pp. 2204-2218 ◽  
Author(s):  
Haben Berhane ◽  
Michael Scott ◽  
Mohammed Elbaz ◽  
Kelly Jarvis ◽  
Patrick McCarthy ◽  
...  
Keyword(s):  
4D Flow ◽  

2021 ◽  
Author(s):  
E. Ferdian ◽  
D. Marlevi ◽  
J. Schollenberger ◽  
M. Aristova ◽  
E.R. Edelman ◽  
...  

ABSTRACTThe development of cerebrovascular disease is tightly coupled to changes in cerebrovascular hemodynamics, with altered flow and relative pressure indicative of the onset, development, and acute manifestation of pathology. Image-based monitoring of cerebrovascular hemodynamics is, however, complicated by the narrow and tortuous vasculature, where accurate output directly depends on sufficient spatial resolution. To address this, we present a method combining dedicated deep learning and state-of-the-art 4D Flow MRI to generate super-resolution full-field images with coupled quantification of relative pressure using a physics-driven image processing approach. The method is trained and validated in a patient-specific in-silico cohort, showing good accuracy in estimating velocity (relative error: 12.0 ± 0.1%, mean absolute error (MAE): 0.07 ± 0.06 m/s at peak velocity), flow (relative error: 6.6 ± 4.7%, root mean square error (RMSE): 0.5 ± 0.1 mL/s at peak flow), and with maintained recovery of relative pressure through the circle of Willis (relative error: 11.0 ± 7.3%, RMSE: 0.3 ± 0.2 mmHg). Furthermore, the method is applied to an in-vivo volunteer cohort, effectively generating data at <0.5mm resolution and showing potential in reducing low-resolution bias in relative pressure estimation. Our approach presents a promising method to non-invasively quantify cerebrovascular hemodynamics, applicable to dedicated clinical cohorts in the future.


Radiology ◽  
2021 ◽  
Author(s):  
Alejandro Roldán-Alzate ◽  
Thomas M. Grist
Keyword(s):  
4D Flow ◽  

2021 ◽  
Author(s):  
Patrick Geeraert ◽  
Hansuk Kim ◽  
Safia Ihsan Ali ◽  
Ashifa Hudani ◽  
Shirin Aliabadi ◽  
...  

Blood flow through the heart and great vessels moves in three dimensions (3D) throughout time. However, the assessment of its 3D nature has been limited in the human body. Recent advances in magnetic resonance imaging (MRI) allow for the comprehensive visualization and quantification of in-vivo flow dynamics using four-dimensional (4D) flow MRI. In addition, this technique provides the opportunity to obtain advanced hemodynamic biomarkers such as vorticity, helicity, wall shear stress (WSS), pressure gradients, viscous energy loss (EL), and turbulent kinetic energy (TKE). This chapter will introduce 4D flow MRI which is currently used for blood flow visualization and advanced quantification of cardiac hemodynamic biomarkers. We will discuss its advantages relative to other in-vivo flow imaging techniques and describe its potential clinical applications in cardiology.


Author(s):  
Mariana Bustamante ◽  
Federica Viola ◽  
Carl‐Johan Carlhäll ◽  
Tino Ebbers

2020 ◽  
Vol 32 (1) ◽  
pp. 35
Author(s):  
Pietro Sergio ◽  
Antonio Miceli
Keyword(s):  
4D Flow ◽  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nanae Tsuchiya ◽  
Michinobu Nagao ◽  
Yumi Shiina ◽  
Shohei Miyazaki ◽  
Kei Inai ◽  
...  

AbstractWe used 4D-flow MRI to investigate circulation, an area integral of vorticity, in the main pulmonary artery (MPA) as a new hemodynamic parameter for assessing patients with a repaired Tetralogy of Fallot (TOF). We evaluated the relationship between circulation, right ventricular (RV) function and the pulmonary regurgitant fraction (PRF). Twenty patients with a repaired TOF underwent cardiac MRI. Flow-sensitive 3D-gradient sequences were used to obtain 4D-flow images. Vortex formation in the MPA was visualized, with short-axis and longitudinal vorticities calculated by software specialized for 4D flow. The RV indexed end-diastolic/end-systolic volumes (RVEDVi/RVESVi) and RV ejection fraction (RVEF) were measured by cine MRI. The PR fraction (PRF) and MPA area were measured by 2D phase-contrast MRI. Spearman ρ values were determined to assess the relationships between circulation, RV function, and PRF. Vortex formation in the MPA occurred in 15 of 20 patients (75%). The longitudinal circulation (11.7 ± 5.1 m2/s) was correlated with the RVEF (ρ = − 0.85, p = 0.0002), RVEDVi (ρ = 0.62, p = 0.03), and RVESVi (ρ = 0.76, p = 0.003) after adjusting for the MPA size. The short-axis circulation (9.4 ± 3.4 m2/s) in the proximal MPA was positively correlated with the MPA area (ρ = 0.61, p = 0.004). The relationships between the PRF and circulation or RV function were not significant. Increased longitudinal circulation in the MPA, as demonstrated by circulation analysis using 4D flow MRI, was related to RV dysfunction in patients with a repaired TOF.


Sign in / Sign up

Export Citation Format

Share Document