scholarly journals Can machine learning-based analysis of multiparameter MRI and clinical parameters improve the performance of clinically significant prostate cancer diagnosis?

Author(s):  
Tao Peng ◽  
JianMing Xiao ◽  
Lin Li ◽  
BingJie Pu ◽  
XiangKe Niu ◽  
...  

Abstract Purpose To establish machine learning(ML) models for the diagnosis of clinically significant prostate cancer (csPC) using multiparameter magnetic resonance imaging (mpMRI), texture analysis (TA), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) quantitative analysis and clinical parameters and to evaluate the stability of these models in internal and temporal validation. Methods The dataset of 194 men was split into training (n = 135) and internal validation (n = 59) cohorts, and a temporal dataset (n = 58) was used for evaluation. The lesions with Gleason score ≥ 7 were defined as csPC. Logistic regression (LR), stepwise regression (SR), classical decision tree (cDT), conditional inference tree (CIT), random forest (RF) and support vector machine (SVM) models were established by combining mpMRI-TA, DCE-MRI and clinical parameters and validated by internal and temporal validation using the receiver operating characteristic (ROC) curve and Delong’s method. Results Eight variables were determined as important predictors for csPC, with the first three related to texture features derived from the apparent diffusion coefficient (ADC) mapping. RF, LR and SR models yielded larger and more stable area under the ROC curve values (AUCs) than other models. In the temporal validation, the sensitivity was lower than that of the internal validation (p < 0.05). There were no significant differences in specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV) and AUC (p > 0.05). Conclusions Each machine learning model in this study has good classification ability for csPC. Compared with internal validation, the sensitivity of each machine learning model in temporal validation was reduced, but the specificity, accuracy, PPV, NPV and AUCs remained stable at a good level. The RF, LR and SR models have better classification performance in the imaging-based diagnosis of csPC, and ADC texture-related parameters are of the highest importance.

2019 ◽  
Vol 70 (4) ◽  
pp. 441-451
Author(s):  
Emetullah Cindil ◽  
Yusuf Oner ◽  
Halit Nahit Sendur ◽  
Hakan Ozdemir ◽  
Eymen Gazel ◽  
...  

Introduction To establish the diagnostic performance of the parameters obtained from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging at 3T in discriminating between non-clinically significant prostate cancers (ncsPCa, Gleason score [GS] < 7) and clinically significant prostate cancers (csPCa, GS ≥ 7) in the peripheral zone. Materials and Methods Twenty-six male patients with peripheral zone prostate cancer (PCa) who had undergone 3T multiparametric magnetic resonance imaging (MRI) scan prior to biopsy were included in the study and evaluated retrospectively. The GS was obtained by both standard 12-core transrectal ultrasound guided biopsy and targeted MRI-US fusion biopsy and then confirmed by prostatectomy, if available. For each confirmed tumour focus, DCE-derived quantitative perfusion metrics (Ktrans, Kep, Ve, initial area under the curve [AUC]), the apparent diffusion coefficient (ADC) value, and normalized versions of quantitative metrics were measured and correlated with the GS. Results Ktrans had the highest diagnostic accuracy value of 82% among the DCE-MRI parameters (AUC 0.90), and ADC had the strongest diagnostic accuracy value of 87% among the overall parameters (AUC 0.92). The combination of ADC and Ktrans have higher diagnostic performance with the area under the receiver operating characteristic curve being 0.98 (sensitivity 0.94; specificity 0.89; accuracy 0.92) compared to the individual evaluation of each parameter alone. The GS showed strong negative correlations with ADC (r = −0.72) and normalized ADC (r = −0.69) as well as a significant positive correlation with Ktrans (r = 0.69). Conclusion The combination of Ktrans and ADC and their normalized versions may help differentiate between ncsPCa from csPCa in the peripheral zone.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jing Zeng ◽  
Qingqing Cheng ◽  
Dong Zhang ◽  
Meng Fan ◽  
Changzheng Shi ◽  
...  

BackgroundDynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) now has been used to diagnose prostate cancer (PCa). Equivocal lesions are defined as PIRADS category 3 or a Likert scale of 1 to 5 category 3 lesions. Currently, there are no clear recommendations for the management of these lesions. This study aimed to estimate the diagnostic capacity of DCE-MRI for PCa and clinically significant prostate cancer (csPCa) in equivocal lesions.Materials and methodsTwo researchers searched PubMed, Embase and Web of Science to identify studies that met our subject. We searched for articles that mention the accuracy of the diagnosis of DCE-MRI for PCa or csPCa in equivocal lesions and used histopathological results as the reference standard. We used a tool (the Quality Assessment of Diagnostic Accuracy Studies-2 tool) to evaluate the quality of the studies that we screened out. Meta-regression was used to explore the reasons for heterogeneity in results.ResultsTen articles were eventually included in our study. The sensitivity, specificity and 95% confidence intervals (CI) for DCE-MRI in diagnosing csPCa were 0.67 (95% CI, 0.56–0.76), 0.58 (95% CI, 0.46–0.68). The sensitivity and specificity and 95% CI for DCE-MRI in diagnosing PCa were 0.57 (95% CI, 0.46–0.68), 0.58 (95% CI, 0.45–0.70). The areas under the curve (AUC) of DCE-MRI were 0.67 (95% CI, 0.63–0.71) and 0.60 (95% CI, 0.55–0.64) while diagnosing csPCa and PCa. Through meta-regression, we found that study design, magnetic field strength, the definition of csPCa, and the scoring system were the sources of heterogeneity.ConclusionThe results of our study indicate that the role of DCE-MRI in equivocal lesions may be limited.


2021 ◽  
pp. 205141582110237
Author(s):  
Enrico Checcucci ◽  
Sabrina De Cillis ◽  
Daniele Amparore ◽  
Diletta Garrou ◽  
Roberta Aimar ◽  
...  

Objectives: To determine if standard biopsy still has a role in the detection of prostate cancer or clinically significant prostate cancer in biopsy-naive patients with positive multiparametric magnetic resonance imaging. Materials and methods: We extracted, from our prospective maintained fusion biopsy database, patients from March 2014 to December 2018. The detection rate of prostate cancer and clinically significant prostate cancer and complication rate were analysed in a cohort of patients who underwent fusion biopsy alone (group A) or fusion biopsy plus standard biopsy (group B). The International Society of Urological Pathology grade group determined on prostate biopsy with the grade group determined on final pathology among patients who underwent radical prostatectomy were compared. Results: Prostate cancer was found in 249/389 (64.01%) and 215/337 (63.8%) patients in groups A and B, respectively ( P=0.98), while the clinically significant prostate cancer detection rate was 57.8% and 55.1% ( P=0.52). No significant differences in complications were found. No differences in the upgrading rate between biopsy and final pathology finding after radical prostatectomy were recorded. Conclusions: In biopsy-naive patients, with suspected prostate cancer and positive multiparametric magnetic resonance imaging the addition of standard biopsy to fusion biopsy did not increase significantly the detection rate of prostate cancer or clinically significant prostate cancer. Moreover, the rate of upgrading of the cancer grade group between biopsy and final pathology was not affected by the addition of standard biopsy. Level of evidence: Not applicable for this multicentre audit.


2021 ◽  
pp. 205141582110043
Author(s):  
Hanna J El-Khoury ◽  
Niranjan J Sathianathen ◽  
Yuxin Jiao ◽  
Reza Farzan ◽  
Dennis Gyomber ◽  
...  

Objectives: This study aimed to characterise the accuracy of multiparametric magnetic resonance imaging (mpMRI) as an adjunct to prostate biopsy, and to assess the effect of the new Australian Medicare rebate on practice at a metropolitan public hospital. Patients and methods: We identified patients who underwent transrectal ultrasound (TRUS)-guided prostate biopsy at a single institution over a two-year period. Patients were placed into two groups, depending upon whether their consent was obtained before or after the introduction of the Australian Medicare rebate for mpMRI. We extracted data on mpMRI results and TRUS-guided biopsy histopathology. Descriptive statistics were used to demonstrate baseline patient characteristics as well as MRI and histopathology results. Results: A total of 252 patients were included for analysis, of whom 128 underwent biopsy following the introduction of the Medicare rebate for mpMRI. There was a significant association between Prostate Imaging Reporting and Data System v2 (PI-RADS) classification and the diagnosis of clinically significant prostate cancer ( p<0.01). Only one man with PI-RADS ⩽2 was found to have clinically significant prostate cancer. Four men with a PI-RADS 3 lesion were found to have clinically significant cancer. A PI-RADS 4 or 5 lesion was significantly associated with the diagnosis of clinically significant cancer on multivariable analysis. Conclusion: mpMRI is an important adjunct to biopsy in the diagnosis of clinically significant prostate cancer. Our findings support the safety of omitting/delaying prostate biopsy in men with negative mpMRI. Level of evidence: Level 3 retrospective case-control study.


Sign in / Sign up

Export Citation Format

Share Document