scholarly journals Comparison of crustal and upper mantle heterogeneity in different time periods: Indonesian subduction zone to northern Australia

2014 ◽  
Vol 27 (1) ◽  
pp. 47-55
Author(s):  
Weijia Sun ◽  
Li-Yun Fu ◽  
B. L. N. Kennett
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Y. Yang ◽  
C. H. Langmuir ◽  
Y. Cai ◽  
P. Michael ◽  
S. L. Goldstein ◽  
...  

AbstractThe plate tectonic cycle produces chemically distinct mid-ocean ridge basalts and arc volcanics, with the latter enriched in elements such as Ba, Rb, Th, Sr and Pb and depleted in Nb owing to the water-rich flux from the subducted slab. Basalts from back-arc basins, with intermediate compositions, show that such a slab flux can be transported behind the volcanic front of the arc and incorporated into mantle flow. Hence it is puzzling why melts of subduction-modified mantle have rarely been recognized in mid-ocean ridge basalts. Here we report the first mid-ocean ridge basalt samples with distinct arc signatures, akin to back-arc basin basalts, from the Arctic Gakkel Ridge. A new high precision dataset for 576 Gakkel samples suggests a pervasive subduction influence in this region. This influence can also be identified in Atlantic and Indian mid-ocean ridge basalts but is nearly absent in Pacific mid-ocean ridge basalts. Such a hemispheric-scale upper mantle heterogeneity reflects subduction modification of the asthenospheric mantle which is incorporated into mantle flow, and whose geographical distribution is controlled dominantly by a “subduction shield” that has surrounded the Pacific Ocean for 180 Myr. Simple modeling suggests that a slab flux equivalent to ~13% of the output at arcs is incorporated into the convecting upper mantle.


2010 ◽  
Vol 11 (5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Pietro Armienti ◽  
Daniela Gasperini

2009 ◽  
Vol 46 (2) ◽  
pp. 139-154 ◽  
Author(s):  
Erşan Türkoğlu ◽  
Martyn Unsworth ◽  
Dinu Pana

Geophysical studies of upper mantle structure can provide constraints on diamond formation. Teleseismic and magnetotelluric data can be used in diamond exploration by mapping the depth of the lithosphere–asthenosphere boundary. Studies in the central Slave Craton and at Fort-à-la-Corne have detected conductors in the lithospheric mantle close to, or beneath, diamondiferous kimberlites. Graphite can potentially explain the enhanced conductivity and may imply the presence of diamonds at greater depth. Petrologic arguments suggest that the shallow lithospheric mantle may be too oxidized to contain graphite. Other diamond-bearing regions show no upper mantle conductor suggesting that the correlation with diamondiferous kimberlites is not universal. The Buffalo Head Hills in Alberta host diamondiferous kimberlites in a Proterozoic terrane and may have formed in a subduction zone setting. Long period magnetotelluric data were used to investigate the upper mantle resistivity structure of this region. Magnetotelluric (MT) data were recorded at 23 locations on a north–south profile extending from Fort Vermilion to Utikuma Lake and an east–west profile at 57.2°N. The data were combined with Lithoprobe MT data and inverted to produce a three-dimensional (3-D) resistivity model with the asthenosphere at 180–220 km depth. This model did not contain an upper mantle conductor beneath the Buffalo Head Hills kimberlites. The 3-D inversion exhibited an eastward dipping conductor in the crust beneath the Kiskatinaw terrane that could represent the fossil subduction zone that supplied the carbon for diamond formation. The low resistivity at crustal depths in this structure is likely due to graphite derived from subducted organic material.


2009 ◽  
Vol 114 (B12) ◽  
Author(s):  
J. M. Warren ◽  
N. Shimizu ◽  
C. Sakaguchi ◽  
H. J. B. Dick ◽  
E. Nakamura

2019 ◽  
Vol 217 (3) ◽  
pp. 1929-1948 ◽  
Author(s):  
Helen A Janiszewski ◽  
James B Gaherty ◽  
Geoffrey A Abers ◽  
Haiying Gao ◽  
Zachary C Eilon

SUMMARY A new amphibious seismic data set from the Cascadia subduction zone is used to characterize the lithosphere structure from the Juan de Fuca ridge to the Cascades backarc. These seismic data are allowing the imaging of an entire tectonic plate from its creation at the ridge through the onset of the subduction to beyond the volcanic arc, along the entire strike of the Cascadia subduction zone. We develop a tilt and compliance correction procedure for ocean-bottom seismometers that employs automated quality control to calculate robust station noise properties. To elucidate crust and upper-mantle structure, we present shoreline-crossing Rayleigh-wave phase-velocity maps for the Cascadia subduction zone, calculated from earthquake data from 20 to 160 s period and from ambient-noise correlations from 9 to 20 s period. We interpret the phase-velocity maps in terms of the tectonics associated with the Juan de Fuca plate history and the Cascadia subduction system. We find that thermal oceanic plate cooling models cannot explain velocity anomalies observed beneath the Juan de Fuca plate. Instead, they may be explained by a ≤1 per cent partial melt region beneath the ridge and are spatially collocated with patches of hydration and increased faulting in the crust and upper mantle near the deformation front. In the forearc, slow velocities appear to be more prevalent in areas that experienced high slip in past Cascadia megathrust earthquakes and generally occur updip of the highest-density tremor regions and locations of intraplate earthquakes. Beneath the volcanic arc, the slowest phase velocities correlate with regions of highest magma production volume.


Sign in / Sign up

Export Citation Format

Share Document