High efficiency axial deep creep-feed grinding machining technology of engineering ceramics materials

2012 ◽  
Vol 27 (5) ◽  
pp. 902-906
Author(s):  
Fang Guo ◽  
Baoguo Zhang ◽  
Hong Lu ◽  
Xinli Tian ◽  
Jianquan Wang ◽  
...  
2012 ◽  
Vol 472-475 ◽  
pp. 927-931
Author(s):  
Xin Li Tian ◽  
Fu Qiang Li ◽  
Ya Tao Mao ◽  
Bao Guo Zhang ◽  
Jian Quan Wang

Introducing the grinding mechanism of axial creep-feed grinding ceramics with a single diamond grain. Establishing the simulation model of a single grain grinding engineering ceramics by axial creep-feed grinding and analyzing the simulation results of the grinding force in the X,Y,Z axis. Finally, the impacts of the wheel speed, axial feed rate and workpiece speed upon grinding forces were discussed by simulating the single diamond abrasive grinding process under different grinding conditions.


2012 ◽  
Vol 452-453 ◽  
pp. 66-71
Author(s):  
Fang Guo ◽  
Xin Li Tian ◽  
Jian Quan Wang ◽  
Xiu Jian Tang ◽  
Ya Tao Mao ◽  
...  

Author(s):  
W. Brian Rowe

Many scientists contributed to the analysis of temperatures in grinding leading up to present-day understanding. This paper draws together important developments from various papers and aims to identify an improved general approach to thermal analysis with wide applicability including for conventional fine grinding, creep feed grinding, and high efficiency deep grinding. Complexity of the basic derivation is avoided since the resulting temperature model is based purely on heat balance. Challenges for future thermal analysis are indicated. Emphasis is placed on fundamental principles for improved accuracy and for convenience of application in process control.


Author(s):  
Jiaqiang Dang ◽  
Heng Zang ◽  
Qinglong An ◽  
Weiwei Ming ◽  
Ming Chen

1995 ◽  
Vol 117 (1) ◽  
pp. 55-61 ◽  
Author(s):  
C. Guo ◽  
S. Malkin

An analysis is presented for the fraction of the energy transported as heat to the workpiece during grinding. The abrasive grains and grinding fluid in the wheel pores are considered as a thermal composite which moves relative to the grinding zone at the wheel speed. The energy partition fraction to the workpiece is modeled by setting the temperature of the workpiece surface equal to that of the composite surface at every point along the grinding zone, which allows variation of the energy partition along the grinding zone. Analytical results indicate that the energy partition fraction to the workpiece is approximately constant along the grinding zone for regular down grinding, but varies greatly along the grinding zone for regular up grinding and both up and down creep-feed grinding. The resulting temperature distributions have important implications for selecting up versus down grinding especially for creep-feed operations.


Sign in / Sign up

Export Citation Format

Share Document