temperature model
Recently Published Documents


TOTAL DOCUMENTS

847
(FIVE YEARS 172)

H-INDEX

38
(FIVE YEARS 6)

Author(s):  
Mari Dahl Eggen ◽  
Kristina Rognlien Dahl ◽  
Sven Peter Näsholm ◽  
Steffen Mæland

AbstractThis study suggests a stochastic model for time series of daily zonal (circumpolar) mean stratospheric temperature at a given pressure level. It can be seen as an extension of previous studies which have developed stochastic models for surface temperatures. The proposed model is a combination of a deterministic seasonality function and a Lévy-driven multidimensional Ornstein–Uhlenbeck process, which is a mean-reverting stochastic process. More specifically, the deseasonalized temperature model is an order 4 continuous-time autoregressive model, meaning that the stratospheric temperature is modeled to be directly dependent on the temperature over four preceding days, while the model’s longer-range memory stems from its recursive nature. This study is based on temperature data from the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis model product. The residuals of the autoregressive model are well represented by normal inverse Gaussian-distributed random variables scaled with a time-dependent volatility function. A monthly variability in speed of mean reversion of stratospheric temperature is found, hence suggesting a generalization of the fourth-order continuous-time autoregressive model. A stochastic stratospheric temperature model, as proposed in this paper, can be used in geophysical analyses to improve the understanding of stratospheric dynamics. In particular, such characterizations of stratospheric temperature may be a step towards greater insight in modeling and prediction of large-scale middle atmospheric events, such as sudden stratospheric warming. Through stratosphere–troposphere coupling, the stratosphere is hence a source of extended tropospheric predictability at weekly to monthly timescales, which is of great importance in several societal and industry sectors.


2021 ◽  
pp. 4537-4544
Author(s):  
Ahmed A. Hameed ◽  
Kamal M. Abood

 The objective of this study is to select a suitable observing region at Baghdad location (44o 22' 48", 33o 16' 30") with low interference that may affect frequency of 1.42 GHz. Baghdad University Radio Telescope (BURT) is used in this study to determine a convenient region for observation in Baghdad sky. Different azimuths and elevations were chosen at different observations time. The results of this study showed that the best observations regions were located at azimuth (120o-160o) and (210o-260o). These regions included less sky temperature and estimated to be (42.8 to 163) K. The sky temperature model could be represented as a polynomial of third degree that could fit the behavior of the observation points.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 14
Author(s):  
Tao Feng ◽  
Gong Chen ◽  
Hainian Han ◽  
Jie Qiao

The dynamics of ablation in monocrystalline silicon, from electron-hole plasma generation to material expansion, upon irradiation by a single femtosecond laser pulse (1030 nm, 300 fs pulse duration) at a wide range of fluences is investigated using a time-resolved microscopy technique. The reflectivity evolution obtained from dynamic images in combination with a theoretical Drude model and a Two-Temperature model provides new insights on material excitation and ablation process. For all fluences, the reflectivity increased to a temporary stable state after hundreds of femtoseconds. This behavior was predicted using a temperature-dependent refractive index in the Drude model. The increase in velocity of plasma generation with increasing fluence was theoretically predicted by the Two-Temperature model. Two ablation regimes at high fluences (>0.86 J/cm2) were identified through the measured transient reflectivity and ablation crater profile. The simulation shows that the fluence triggering the second ablation regime produces a boiling temperature (silicon, 2628 K).


Author(s):  
Eugen Eisfeld ◽  
Daniel Förster ◽  
Dominic Klein ◽  
Johannes Roth

Abstract For our model material aluminum, the influence of the laser pulse duration in the range between 0.5 ps and 16 ps on the ablation depth is investigated in a computational study with a hybrid approach, combining molecular dynamics with the well known two-temperature model. A simple, yet expedient extension is proposed to account for the delayed thermalization as well as ballistic transport of the excited electrons. Comparing the simulated ablation depths to a series of our own experiments, the extension is found to considerably increase the predictive power of the model.


Space Weather ◽  
2021 ◽  
Author(s):  
Richard J. Licata ◽  
Piyush M. Mehta ◽  
Daniel R. Weimer ◽  
W. Kent Tobiska

2021 ◽  
Vol 163 (1) ◽  
pp. 2
Author(s):  
Ashley Gerard Davies

Abstract Between 1996 and 2001, the Galileo Near-Infrared Mapping Spectrometer (NIMS) obtained 190 observations of the volcanic Jovian moon Io. Rathbun et al. (2018) [Astron. J., 156, 207] published a list of 287 measurements of 3.5 μm spectral radiance from some of Io’s active volcanoes, derived from a subset of the NIMS data. However, the spectral radiances reported by Rathbun et al. are lower, in some cases by multiple orders of magnitude, than other analyses of the same observations and spectral radiances derived from contemporaneous ground-based data. In many cases, the Rathbun et al. hot-spot radiances are underreported by a factor of π, likely due to a mistake in unit conversion. For a small number of powerful hot spots, additional discrepancies appear to be the result of poor fits to data limited in wavelength range by NIMS detector saturation and a methodology that discards short-wavelength NIMS data that otherwise would have provided more robust temperature model fits.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2890
Author(s):  
Alessio Giorgini ◽  
Rogemar S. Mamon ◽  
Marianito R. Rodrigo

Stochastic processes are employed in this paper to capture the evolution of daily mean temperatures, with the goal of pricing temperature-based weather options. A stochastic harmonic oscillator model is proposed for the temperature dynamics and results of numerical simulations and parameter estimation are presented. The temperature model is used to price a one-month call option and a sensitivity analysis is undertaken to examine how call option prices are affected when the model parameters are varied.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022023
Author(s):  
G V Mikheeva ◽  
A V Pashin

Abstract A numerical study of heat transfer between an electron gas and a crystal lattice in a metal nanofilm under irradiation with an ultrashort laser pulse was carried out on the basis of a parabolic two-temperature model of thermal conductivity presented in a dimensionless form. For the numerical solution, the finite difference method was used using the explicit-implicit Crank-Nicholson scheme. As a result of the numerical study, it was found that with an increase in the thickness of the plate, the equilibrium temperature decreases, and the time for the onset of thermal equilibrium between the electrons and the crystal lattice increases.


Author(s):  
S. Clara ◽  
F. Feichtinger ◽  
T. Voglhuber-Brunnmaier ◽  
A. Trols ◽  
B. Jakoby

Sign in / Sign up

Export Citation Format

Share Document