composite surface
Recently Published Documents


TOTAL DOCUMENTS

485
(FIVE YEARS 150)

H-INDEX

33
(FIVE YEARS 5)

2022 ◽  
pp. 1-9
Author(s):  
P O Rusinov ◽  
Zh M Blednova ◽  
G V Kurapov

The studies carried out show that the task of ensuring the reliability and expanding the functionality of products operating under multifactorial effects (temperature, force, deformation) can be successfully solved by functionally oriented surface composite materials with thermoelastic martensitic transformations (TMT). The authors proposed the technology of layer-by-layer synthesis of functionally-oriented composite layered materials with TMT in argon environment, implemented on patented equipment in a single technological cycle. This technology determines not only the novelty, but also the economic feasibility of technical solutions. We also suggested step-by-step methods of thermal and thermomechanical treatment of composite layered materials with TMT, which contribute to the structure stabilization while decreasing residual stress. On the basis of complex X-ray diffraction and electron microscopic studies, we determined the structural parameters of High Velocity Oxy-Fuel (HVOF) materials obtained by HVOF with subsequent thermal and thermomechanical treatment and ceramic materials ZrO2-Y2O3-CeO2-Al2O3 stabilized with Al2O3 with subsequent heat treatment. We investigated the microhardness of surface high-entropy and ceramic materials. Tests for "friction-wear" and mechanical high-cycle fatigue of steels with a composite surface laminate showed decrease in the wear rate and increase in the cyclic durability.


2021 ◽  
Vol 91 (12) ◽  
pp. 1275-1304
Author(s):  
Stephen T. Hasiotis ◽  
Marjorie A. Chan ◽  
Judith Totman Parrish

ABSTRACT A model-independent, sequence stratigraphic approach is used to define bounding surfaces in the Navajo Sandstone in order to identify an architectural hierarchy of genetically related sedimentary packages and the surfaces that bound them across multiple scales of both eolian and non-eolian components of an erg system. Seven bounding surfaces and eight depositional units are defined, from small to large scale. A lamina-deviation surface bounds wedge- and tabular-shaped sets of laminae and/or laminasets, separating those that have different angle orientations on the dune slipface. A bed-deviation surface bounds a succession of beds (crossbeds) that lie at different angles or orientations to bedding above, below, or adjacent to it. A bedset-deviation surface is curved, inclined, and/or wavy and irregular that bounds bedsets and their internal stratification patterns; that is, bed-deviation surfaces, and lamina-deviation surfaces. A simple surface is gently inclined with or without small, concave or convex segments that bound beds and bedsets. A composite surface is horizontal with or without concave, curved, or irregular portions of that surface. A complex surface is laterally extensive (∼ 1–10+ km) that regionally bounds and truncates underlying conterminous and interfingered eolian and non-eolian strata. An amalgamated surface is a regionally extensive (∼ 10 to 100s km) mappable unconformity, merged unconformities, and their laterally equivalent conformable surface that can exhibit local to regional pedogenic modification, lags, and significant (meters to 10s m) paleotopographic relief. The genetically related sedimentary packages typically bounded by like or higher-rank surfaces are defined as laminae, laminasets, bed, bedsets, and simple, composite, complex, and amalgamated units. Field relationships of strata and surfaces are key to reconstructing the interactions between eolian and non-eolian deposits and the processes they represent at the local, regional, and basin scale. This classification scheme can be applied to erg-system strata to fully integrate changes in diverse facies within and between contiguous deposits.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Marcos José da Silva ◽  
Wellington Alves ◽  
Carlos Frederico de Oliveira Graeff ◽  
Paulo Henrique Perlatti D’Alpino

Objectives. Bioglass composites and polymers are materials of great interest for the medical and dental areas due to their properties, combining the bioactivity of ceramic materials and the mechanical properties of polymers. The purpose of the present study was to develop and to characterize the physicochemical and morphological properties an experimental bioglass-based ternary composite composed associated with sodium carboxymethylcellulose (Na-CMC) and polyvinyl alcohol (PVA). The compatibility of functional groups with bioglass was previously evaluated. The composite was then synthesized and evaluated in terms of morphology, elemental composition, compressive strength, porosity, and bioactivity. Materials and Methods. The bioglass was previously synthesized using a sol-gel route and characterized using FTIR analysis to identify the functional groups. The bone graft composite was then synthesized associating the bioglass with PVA, surfactant Triton X, and Na-CMC. The composite was then morphologically characterized using SEM/EDS. The porosity of the composite was analyzed using µCT, which also provided the composite compression strength. The composite was then evaluated in terms of its bioactivity using SEM/EDS analyses after immersion in SBF for 12, 24, 48, and 72 h. Results. FTIR analysis confirmed, among other components, the presence of Si–O–Ca and Si–O–Si bonds, compatible with bioglass. SEM analysis exhibited a composite with a porous structure without spikes. The elemental mapping confirmed the presence of Si, Ca, and P in the composite. µCT analysis demonstrated a porous structure with 42.67% of open pores and an average compression strength of 124.7 MPa. It has also demonstrated ionic changes in the composite surface after immersion in SBF, with increasing detection of Ca and P as a function of time, highlighting its chemical bioactivity. Conclusions. It can be concluded that the proposed bioglass-based composite presents a three-dimensional, well-structured, chemically bioactive porous structure, mechanically resistant for being reinforced with polymeric phases, with promising results as a synthetic bone graft, which makes it suitable for guided bone regeneration.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chenkai Zhu ◽  
Lei Nie ◽  
Xiaofei Yan ◽  
Jiawei Li ◽  
Dongming Qi

Abstract In this work, the structure of composite was designed as Core Stack and Surface Stack, which was treated with the expandable graphite (EG) and metal oxides such as iron oxide (IO), hydroxyapatite (HA), and aluminum tri-hydroxide (ATH). The mechanical performance of composites was characterized via flexural performance and interlaminar shear strength analysis. The flame retardance and smoke suppression of composite was explored in detail by LOI, UL-94, and cone calorimeter test. The findings presented that flexural properties of composites were observed to decrease due to delamination of surface stack, whilst no significant effect on interlaminar shear strength. In comparison with control composite, the loading of metal oxide into composite Surface Stack led to the reduction of peak heat release rate, total heat release, and fire growth index effectively. Moreover, the remarkable decrease in total smoke production could be observed due to the addition of iron oxide and the flame retardant mechanism was discussed. This study was the preliminary exploration of composite with flame retardant design which could be potential solution to improve flame retardancy and smoke suppression of composite with better mechanical structure preservation.


2021 ◽  
pp. 1-42
Author(s):  
Debarghya Saha ◽  
Bhabani K. Satapathy

Abstract The influence of clay mineral silicate types, such as halloysite, montmorillonite, and wollastonite with tubular, plate like, and acicular morphologies respectively, on frictional oscillation of composite materials have been evaluated on Chase type dynamometer and optimised following the combination of Taguchi's L9 design of experiment and regression analysis approaches. The coefficient of friction of ~0.35-0.45 and cumulative wear at < 10 % remained well within the acceptable range. The optimal tuning of friction oscillation to reduce braking induced noise and vibration propensity has been achieved by montmorillonite clay with platelet type morphology or by combination of MgO and wollastonite clay with acicular morphology. The extent of Fe- content in wear debris close to ~ 80 % on the composite surface led to an optimal level of friction oscillation amplitude (Aamp). The hierarchical ranking of the clay based composites by TOPSIS based operation research approach lead to the understanding of design ideology optimization for composites to ensure minimal friction oscillations.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Di Sun ◽  
Pengfei Xing ◽  
Guobin Li ◽  
Hongtao Gao ◽  
Sifan Yang ◽  
...  

This paper investigated the friction-induced vibration (FIV) behavior under the running-in process with oil lubrication. The FIV signal with periodic characteristics under lubrication was identified with the help of the squeal signal induced in an oil-free wear experiment and then extracted by the harmonic wavelet packet transform (HWPT). The variation of the FIV signal from running-in wear stage to steady wear stage was studied by its root mean square (RMS) values. The result indicates that the time-frequency characteristics of the FIV signals evolve with the wear process and can reflect the wear stages of the friction pairs. The RMS evolution of the FIV signal is in the same trend to the composite surface roughness and demonstrates that the friction pair goes through the running-in wear stage and the steady wear stage. Therefore, the FIV signal with periodic characteristics can describe the evolution of the running-in process and distinguish the running-in wear stage and the stable wear stage of the friction pair.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3072
Author(s):  
Ksenia Babina ◽  
Maria Polyakova ◽  
Inna Sokhova ◽  
Vladlena Doroshina ◽  
Marianna Arakelyan ◽  
...  

We aimed to assess the effects of ultrasonic scaling and air-powder polishing on the roughness of enamel, three nanocomposites (Premise, Herculite Ultra, Harmonize), and composite/enamel and composite/cementum interfaces. Class V cavities were restored in 99 extracted third molars with one of the three nanocomposites and treated with ultrasonic scaler or air-powder polishing device (calcium carbonate or sodium bicarbonate powders). The roughness (Ra) of the investigated surfaces was measured with contact profilometer before and after treatment. The data were analyzed using repeated measures ANOVA. Specimens’ Ra values before instrumentation were near the clinically acceptable 0.2 μm threshold. All techniques increased the roughness of the tested surfaces; however, the enamel was slightly affected. The mean Ra values after prophylaxis for composite, composite/cementum and composite/enamel surfaces were 0.32–0.55, 1.33–1.73, and 1.25–1.36, respectively. The extent of composite surface damage was material dependent. Premise surface was not altered by ultrasonic scaling significantly. Air-powder polishing with both powders produced a greater increase in surface roughness of composite resin and restorations margins than ultrasonic scaling. The Ra values after both types of air polishing for Herculite Ultra and Harmonize were approximately 1.5 and 2 times higher, respectively, than those after ultrasonic scaling (p < 0.05).


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6771
Author(s):  
Remigiusz Michalczewski ◽  
Marek Kalbarczyk ◽  
Zbigniew Słomka ◽  
Edyta Osuch-Słomka ◽  
Maciej Łuszcz ◽  
...  

The aim of the study was to investigate effect of Ti/TiB2 composite composition and manufacturing technology parameters on the tribological behaviour of AlCrN coating-composite system. The AlCrN coating was deposited by PVD (Physical Vapour Deposition) method. The composites were manufactured by spark plasma sintering (SPS) from three variants of powders mixtures: Ti with TiB2, Ti6Al4V with TiB2 as well as Ti with B, using (five) different sintering temperatures. For each of the developed coating-composite systems, the wear resistance was evaluated using ball-on-disc SRV tester, at six temperatures (from room temperature up to 900 °C). The results confirmed that high-temperature wear resistance of the coating–substrate combination depends on Ti/TiB2 composite composition and manufacturing technology parameters. In the case of uncoated composite, two processes manage the wear at high temperatures: cracking propagation and surface oxidation. The presence of AlCrN coating on the composite surface protects the surface against deep cracking and surface oxidation. The composites of Group I, sintered at 1250 °C from a mixture of pure Ti and TiB2 (50/50 wt.% ratio) as well as Group III, sintered at 1350 °C from a mixture of pure Ti and B allow the achievement of a satisfactory surface quality, a high adhesion of the PVD coating and moderate wear at high temperatures. However, the composite made of pure Ti and B seems to be a better solution for temperatures exceeding 600 °C.


Sign in / Sign up

Export Citation Format

Share Document