Drilling Combined with Adipose-derived Stem Cells and Bone Morphogenetic Protein-2 to Treat Femoral Head Epiphyseal Necrosis in Juvenile Rabbits

2018 ◽  
Vol 38 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Zi-li Wang ◽  
Rong-zhen He ◽  
Bin Tu ◽  
Jin-shen He ◽  
Xu Cao ◽  
...  
2010 ◽  
Vol 125 (5) ◽  
pp. 1372-1382 ◽  
Author(s):  
Christopher M. Runyan ◽  
Donna C. Jones ◽  
Kevin E. Bove ◽  
Rian A. Maercks ◽  
David S. Simpson ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cong Fan ◽  
Xiaohan Ma ◽  
Yuejun Wang ◽  
Longwei Lv ◽  
Yuan Zhu ◽  
...  

Abstract Background MicroRNAs have been recognized as critical regulators for the osteoblastic lineage differentiation of human adipose-derived stem cells (hASCs). Previously, we have displayed that silencing of miR-137 enhances the osteoblastic differentiation potential of hASCs partly through the coordination of lysine-specific histone demethylase 1 (LSD1), bone morphogenetic protein 2 (BMP2), and mothers against decapentaplegic homolog 4 (SMAD4). However, still numerous molecules involved in the osteogenic regulation of miR-137 remain unknown. This study aimed to further elucidate the epigenetic mechanisms of miR-137 on the osteogenic differentiation of hASCs. Methods Dual-luciferase reporter assay was performed to validate the binding to the 3′ untranslated region (3′ UTR) of NOTCH1 by miR-137. To further identify the role of NOTCH1 in miR-137-modulated osteogenesis, tangeretin (an inhibitor of NOTCH1) was applied to treat hASCs which were transfected with miR-137 knockdown lentiviruses, then together with negative control (NC), miR-137 overexpression and miR-137 knockdown groups, the osteogenic capacity and possible downstream signals were examined. Interrelationships between signaling pathways of NOTCH1-hairy and enhancer of split 1 (HES1), LSD1 and BMP2-SMADs were thoroughly investigated with separate knockdown of NOTCH1, LSD1, BMP2, and HES1. Results We confirmed that miR-137 directly targeted the 3′ UTR of NOTCH1 while positively regulated HES1. Tangeretin reversed the effects of miR-137 knockdown on osteogenic promotion and downstream genes expression. After knocking down NOTCH1 or BMP2 individually, we found that these two signals formed a positive feedback loop as well as activated LSD1 and HES1. In addition, LSD1 knockdown induced NOTCH1 expression while suppressed HES1. Conclusions Collectively, we proposed a NOTCH1/LSD1/BMP2 co-regulatory signaling network to elucidate the modulation of miR-137 on the osteoblastic differentiation of hASCs, thus providing mechanism-based rationale for miRNA-targeted therapy of bone defect.


Author(s):  
Meng Wang ◽  
Hong Sung Min ◽  
Haojie Shan ◽  
Yiwei Lin ◽  
Wenyang Xia ◽  
...  

Increased inflammatory responses is one of the major characteristics of osteonecrosis of the femoral head (ONFH). We aimed to investigate the function of bone morphogenetic protein 2 (BMP-2)/interleukin (IL)-34 axis in the inflammatory responses of ONFH. The systemic and local expression of BMPs in ONFH patients were detected by qRT-PCR and ELISA. In vitro osteoclast differentiation and ONFH mouse models, induced by 20 mg/kg methylprednisolone through intramuscular injection, were established using wild type and BMP-2-/- mice to explore the regulatory role of BMP-2 in pro-inflammatory responses and bone defects of ONFH. IL-34 expression and function were examined in vitro and in vivo through qRT-PCR, TRAP staining, and gene knockout. The systemic and local expression of BMPs were elevated in ONFH patients. BMP-2 reduced the production of pro-inflammatory cytokines and inhibited the differentiation of osteoclasts. Mechanistically, BMP-2 inhibited osteoclasts formation through suppressing IL-34 expression, and then promoted bone repair and alleviated ONFH. In conclusion, our study reveals that BMP-2 inhibits inflammatory responses and osteoclast formation through down-regulating IL-34.


Sign in / Sign up

Export Citation Format

Share Document