A comparison of axial versus coronal image viewing in computer-aided detection of lung nodules on CT

2014 ◽  
Vol 33 (2) ◽  
pp. 76-83 ◽  
Author(s):  
Tae Iwasawa ◽  
Sumiaki Matsumoto ◽  
Takatoshi Aoki ◽  
Fumito Okada ◽  
Yoshihiro Nishimura ◽  
...  
2009 ◽  
Vol 56 (7) ◽  
pp. 1810-1820 ◽  
Author(s):  
Xujiong Ye ◽  
Xinyu Lin ◽  
J. Dehmeshki ◽  
G. Slabaugh ◽  
G. Beddoe

Author(s):  
Ammar Chaudhry ◽  
Ammar Chaudhry ◽  
William H. Moore

Purpose: The radiographic diagnosis of lung nodules is associated with low sensitivity and specificity. Computer-aided detection (CAD) system has been shown to have higher accuracy in the detection of lung nodules. The purpose of this study is to assess the effect on sensitivity and specificity when a CAD system is used to review chest radiographs in real-time setting. Methods: Sixty-three patients, including 24 controls, who had chest radiographs and CT within three months were included in this study. Three radiologists were presented chest radiographs without CAD and were asked to mark all lung nodules. Then the radiologists were allowed to see the CAD region-of-interest (ROI) marks and were asked to agree or disagree with the marks. All marks were correlated with CT studies. Results: The mean sensitivity of the three radiologists without CAD was 16.1%, which showed a statistically significant improvement to 22.5% with CAD. The mean specificity of the three radiologists was 52.5% without CAD and decreased to 48.1% with CAD. There was no significant change in the positive predictive value or negative predictive value. Conclusion: The addition of a CAD system to chest radiography interpretation statistically improves the detection of lung nodules without affecting its specificity. Thus suggesting CAD would improve overall detection of lung nodules.


2013 ◽  
Vol 37 (1) ◽  
pp. 62-69 ◽  
Author(s):  
Qingzhu Wang ◽  
Wenwei Kang ◽  
Chunming Wu ◽  
Bin Wang

Author(s):  
Shabana Rasheed Ziyad ◽  
Venkatachalam Radha ◽  
Thavavel Vayyapuri

Background: Lung cancer has become a major cause of cancer-related deaths. Detection of potentially malignant lung nodules is essential for the early diagnosis and clinical management of lung cancer. In clinical practice, the interpretation of Computed Tomography (CT) images is challenging for radiologists due to a large number of cases. There is a high rate of false positives in the manual findings. Computer aided detection system (CAD) and computer aided diagnosis systems (CADx) enhance the radiologists in accurately delineating the lung nodules. Objectives: The objective is to analyze CAD and CADx systems for lung nodule detection. It is necessary to review the various techniques followed in CAD and CADx systems proposed and implemented by various research persons. This study aims at analyzing the recent application of various concepts in computer science to each stage of CAD and CADx. Methods: This review paper is special in its own kind because it analyses the various techniques proposed by different eminent researchers in noise removal, contrast enhancement, thorax removal, lung segmentation, bone suppression, segmentation of trachea, classification of nodule and nonnodule and final classification of benign and malignant nodules. Results: A comparison of the performance of different techniques implemented by various researchers for the classification of nodule and non-nodule has been tabulated in the paper. Conclusion: The findings of this review paper will definitely prove to be useful to the research community working on automation of lung nodule detection.


2011 ◽  
Vol 14 (3) ◽  
pp. 295-310 ◽  
Author(s):  
Michela Antonelli ◽  
Marco Cococcioni ◽  
Beatrice Lazzerini ◽  
Francesco Marcelloni

2007 ◽  
Vol 4 ◽  
pp. 117693510700400 ◽  
Author(s):  
Matthew S. Brown ◽  
Richard Pais ◽  
Peiyuan Qing ◽  
Sumit Shah ◽  
Michael F. McNitt-Gray ◽  
...  

Computer tomography (CT) imaging plays an important role in cancer detection and quantitative assessment in clinical trials. High-resolution imaging studies on large cohorts of patients generate vast data sets, which are infeasible to analyze through manual interpretation. In this article we describe a comprehensive architecture for computer-aided detection (CAD) and surveillance on lung nodules in CT images. Central to this architecture are the analytic components: an automated nodule detection system, nodule tracking capabilities and volume measurement, which are integrated within a data management system that includes mechanisms for receiving and archiving images, a database for storing quantitative nodule measurements and visualization, and reporting tools. We describe two studies to evaluate CAD technology within this architecture, and the potential application in large clinical trials. The first study involves performance assessment of an automated nodule detection system and its ability to increase radiologist sensitivity when used to provide a second opinion. The second study investigates nodule volume measurements on CT made using a semi-automated technique and shows that volumetric analysis yields significantly different tumor response classifications than a 2D diameter approach. These studies demonstrate the potential of automated CAD tools to assist in quantitative image analysis for clinical trials.


Sign in / Sign up

Export Citation Format

Share Document