Changes in deviation of absorbed dose to water among users by chamber calibration shift

2017 ◽  
Vol 35 (7) ◽  
pp. 389-397
Author(s):  
Tetsurou Katayose ◽  
Hidetoshi Saitoh ◽  
Mitsunobu Igari ◽  
Weishan Chang ◽  
Shimpei Hashimoto ◽  
...  
Author(s):  
K. Hohlfeld ◽  
P. Andreo ◽  
O. Mattsson ◽  
J. P. Simoen

This report examines the methods by which absorbed dose to water can be determined for photon radiations with maximum energies from approximately 1 MeV to 50 MeV, the beam qualities most commonly used for radiation therapy. The report is primarily concerned with methods of measurement for photon radiation, but many aspects are also relevant to the dosimetry of other therapeutic beams (high-energy electrons, protons, etc.). It deals with methods that are sufficiently precise and well established to be incorporated into the dosimetric measurement chain as primary standards (i.e., methods based on ionisation, radiation-induced chemical changes, and calorimetry using either graphite or water). The report discusses the primary dose standards used in several national standards laboratories and reviews the international comparisons that have been made. The report also describes the reference conditions that are suitable for establishing primary standards and provides a formalism for determining absorbed dose, including a discussion of correction factors needed under conditions other than those used to calibrate an instrument at the standards laboratory.


2016 ◽  
Vol 43 (7) ◽  
pp. 4085-4092 ◽  
Author(s):  
S. Dufreneix ◽  
A. Ostrowsky ◽  
B. Rapp ◽  
J. Daures ◽  
J. M. Bordy

Metrologia ◽  
2021 ◽  
Vol 59 (1A) ◽  
pp. 06001
Author(s):  
C Kessler ◽  
D Burns ◽  
B Downton ◽  
M McEwen

Main text A new key comparison of the standards for absorbed dose to water of the National Research Council of Canada (NRC), Canada and the Bureau International des Poids et Mesures (BIPM) was carried out in the 60Co radiation beam of the BIPM in October 2020. The comparison result, based on the calibration coefficients for three transfer standards and evaluated as a ratio of the NRC and the BIPM standards for absorbed dose to water, is 0.9995 with a combined standard uncertainty of 3.4 parts in 103. The result agrees within the uncertainties with the comparison carried out in 2009. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).


2010 ◽  
Vol 25 (1) ◽  
pp. 51-54 ◽  
Author(s):  
Waheed Arshed ◽  
Khalid Mahmood ◽  
Ikramullah Qazi ◽  
Asad Ullah ◽  
Perveen Akhter ◽  
...  

An accurate calibration of the therapy level radiation dosimetry system has a pivotal role in the accuracy of dose delivery to cancer patients. The two methods used for obtaining a tissue equivalent calibration of the system: air kerma calibration and its conversion to a tissue equivalent value (absorbed dose to water) and direct calibration of the system in a water phantom, have been compared for identical irradiation geometry. It was found that the deviation between the two methods remained within a range of 0% to ?1.7% for the PTW UNIDOS dosimetry system. This means that although the recommended method is in-water calibration, under exceptional circumstances, in-air calibration may be used as well.


Author(s):  
K. Hohlfeld ◽  
P. Andreo ◽  
O. Mattsson ◽  
J. P. Simoen

Sign in / Sign up

Export Citation Format

Share Document