Accuracy of a dose-area product compared to an absorbed dose to water at a point in a 2 cm diameter field

2016 ◽  
Vol 43 (7) ◽  
pp. 4085-4092 ◽  
Author(s):  
S. Dufreneix ◽  
A. Ostrowsky ◽  
B. Rapp ◽  
J. Daures ◽  
J. M. Bordy
2020 ◽  
Vol 13 (3) ◽  
pp. 77-86
Author(s):  
S. S. Sarycheva

The study is devoted to the assessment of dose parameters determine the probability of deterministic effects in the skin for patients undergoing high-dose interventional radiological examinations. Particular attention is paid to the analysis of the geometry of the absorbed dose distribution over the patient’s skin for the main types of interventional examinations. The aim of this study was to clarify the methodology for assessment of the maximum absorbed dose in the patients’ skin, taking into account new data. The data collection was carried out in nine city hospitals from Sankt-Petersburg; detailed information about more than 400 procedures was obtained. The data about operation technique for the main types of interventional examinations, physical, technical, geometric and dosimetric parameters for each procedure were registered. Based on the statistical data on distribution of geometric procedure parameters (fields size and projections) possible localizations and values of the absorbed dose in certain areas of the patients’ skin were determined. An updated methodology for skin dose assessment based on the recorded dosimetric value of dose area product considering the radiation fields size was presented. As an alternative, an estimation of the maximum skin dose based on the cumulative air kerma at the patient’s reference point – «representative» point for the patient’s skin considering the tube rotation was proposed. This method does not require the information on used field size. The conservative conversion coefficients from the measured dosimetric values to the peak skin dose and trigger values to prevent deterministic effects in the patients’ skin were calculated.


Author(s):  
Fatollah Bouzarjomehri ◽  
Fereshteh Omidvar ◽  
Mohammad Hossein Zare ◽  
Mashallah Nakhaeine Nejad

Introduction: Today electrophysiology studies and ablation have been developed due to increasing arrhythmias disorder of heart. In these diagnostic – treatments methods, the use of fluoroscopy can be causes patient radiation dose, therefore evaluation of patient's absorbed dose is necessary to protection of the radiation. The aim of this study was to evaluate the absorbed dose in patients undergoing electrophysiology and cardiac ablation and to estimate their risk of cancer in Yazd Afshar Hospital. Methods: This study was a cross-sectional study. In this study, the mean absorbed dose of referral patients for electrophysiology studies and ablation had been measured in the cat. Lab of Afshar Hospital, Yazd. The dosimeter had been used in this research was KAP meter, the M4 DIAMENTOR made in Germany that was able to measure dose-area product and time of the fluoroscopy. The patient effective dose was calculated by the PCXMC software from dose-area product. Results: The mean dose-area in ablation and electrophysiology studies was respectively 153.34±105.32 and 5.62 14.88 Gy.cm2 and the radiation time range was recorded 3.32 to 68.65 minutes and 1.03 to 6.28 minutes, respectively. The mean effective dose of ablation and electrophysiology studies were respectively 16.38 and 1.65 mSv. The cancer risk per ten thousands of patients, who were under the ablation and electrophysiology examinations were estimated 13 and 1.3 people, respectively. Conclusion: Increasing of patient dose due to ablation in this study relation to the other studies can be due to long old of image intensifier device.


2019 ◽  
Vol 34 (4) ◽  
pp. 375-383
Author(s):  
Anja Resnik ◽  
Janez Zibert ◽  
Nejc Mekis

The purpose of this research was to determine how dose area product, effective dose, absorbed doses to specific organs, and image quality changed according to different automatic exposure control positions in pelvis imaging. The research was carried out in two parts. The study was conducted on an anthropomorphic phantom and 200 patients referred to pelvic imaging. We measured the dose area product, field size, height, and mass. Then we calculated the effective dose and absorbed dose for individual organs accordingly. Lateral ionizing cells were first positioned in line with the iliac crests (head towards position) and subsequently, with the femoral neck (head away position). All the images were independently evaluated by three radiologists using ViewDEX and objective image analysis was performed measuring contrast-to-noise ratio and signal-to-noise ratio. We found no significant differences in the Siemens Luminos unit in any of the inspected parameters. However, there was a significant difference in dose area product (37.3 %), effective dose (35.7 %) and average absorbed dose to selected individual organs (36.7 %) when the head away position of the patient was used and the image quality increased. Based on these results, we can propose that the optimal position of the patient regarding the ionizing cells is the head away position.


2020 ◽  
Vol 189 (4) ◽  
pp. 420-427
Author(s):  
Anamaria Pazanin ◽  
Damijan Skrk ◽  
Jessica C O'Driscoll ◽  
Mark F McEntee ◽  
Nejc Mekis

Abstract Purpose To determine the influence of optimal collimation during lumbar spine radiography on radiation dose and image quality. Material and methods 110 lumbar spine patients were split into two groups—the first imaged with standard collimation and the second with optimal collimation. Body mass index, image field size, exposure conditions and dose area product were measured. Effective and absorbed organ doses were calculated. Image quality was assessed. Results Optimal collimation reduced the primary field by up to 40%. The effective dose was reduced by 48% for the AP projection, while no differences were found for the LAT projection due to incorrect positioning of the central beam with standard collimation. The absorbed dose to selected radiosensitive organs decreased by 41 and 10% in the AP and LAT projections, respectively. Image quality for the LAT projection improved by 24% and maintained for the AP projection. Conclusion Optimal collimation in lumbar spine imaging significantly influences patient exposure to radiation.


2020 ◽  
Vol 33 (6) ◽  
pp. 838-844
Author(s):  
Jan-Helge Klingler ◽  
Ulrich Hubbe ◽  
Christoph Scholz ◽  
Florian Volz ◽  
Marc Hohenhaus ◽  
...  

OBJECTIVEIntraoperative 3D imaging and navigation is increasingly used for minimally invasive spine surgery. A novel, noninvasive patient tracker that is adhered as a mask on the skin for 3D navigation necessitates a larger intraoperative 3D image set for appropriate referencing. This enlarged 3D image data set can be acquired by a state-of-the-art 3D C-arm device that is equipped with a large flat-panel detector. However, the presumably associated higher radiation exposure to the patient has essentially not yet been investigated and is therefore the objective of this study.METHODSPatients were retrospectively included if a thoracolumbar 3D scan was performed intraoperatively between 2016 and 2019 using a 3D C-arm with a large 30 × 30–cm flat-panel detector (3D scan volume 4096 cm3) or a 3D C-arm with a smaller 20 × 20–cm flat-panel detector (3D scan volume 2097 cm3), and the dose area product was available for the 3D scan. Additionally, the fluoroscopy time and the number of fluoroscopic images per 3D scan, as well as the BMI of the patients, were recorded.RESULTSThe authors compared 62 intraoperative thoracolumbar 3D scans using the 3D C-arm with a large flat-panel detector and 12 3D scans using the 3D C-arm with a small flat-panel detector. Overall, the 3D C-arm with a large flat-panel detector required more fluoroscopic images per scan (mean 389.0 ± 8.4 vs 117.0 ± 4.6, p < 0.0001), leading to a significantly higher dose area product (mean 1028.6 ± 767.9 vs 457.1 ± 118.9 cGy × cm2, p = 0.0044).CONCLUSIONSThe novel, noninvasive patient tracker mask facilitates intraoperative 3D navigation while eliminating the need for an additional skin incision with detachment of the autochthonous muscles. However, the use of this patient tracker mask requires a larger intraoperative 3D image data set for accurate registration, resulting in a 2.25 times higher radiation exposure to the patient. The use of the patient tracker mask should thus be based on an individual decision, especially taking into considering the radiation exposure and extent of instrumentation.


Author(s):  
K. Hohlfeld ◽  
P. Andreo ◽  
O. Mattsson ◽  
J. P. Simoen

This report examines the methods by which absorbed dose to water can be determined for photon radiations with maximum energies from approximately 1 MeV to 50 MeV, the beam qualities most commonly used for radiation therapy. The report is primarily concerned with methods of measurement for photon radiation, but many aspects are also relevant to the dosimetry of other therapeutic beams (high-energy electrons, protons, etc.). It deals with methods that are sufficiently precise and well established to be incorporated into the dosimetric measurement chain as primary standards (i.e., methods based on ionisation, radiation-induced chemical changes, and calorimetry using either graphite or water). The report discusses the primary dose standards used in several national standards laboratories and reviews the international comparisons that have been made. The report also describes the reference conditions that are suitable for establishing primary standards and provides a formalism for determining absorbed dose, including a discussion of correction factors needed under conditions other than those used to calibrate an instrument at the standards laboratory.


Injury ◽  
2013 ◽  
Vol 44 ◽  
pp. S39
Author(s):  
T. Ege ◽  
K. Koca ◽  
Y. Yurttas ◽  
M. Kürklü ◽  
H. Özkan ◽  
...  

2015 ◽  
Vol 31 ◽  
pp. e52-e53 ◽  
Author(s):  
M. Le Roy ◽  
S. Dufreneix ◽  
J. Daures ◽  
F. Delaunay ◽  
J. Gouriou ◽  
...  
Keyword(s):  
X Ray ◽  

Metrologia ◽  
2021 ◽  
Vol 58 (1A) ◽  
pp. 06013
Author(s):  
C Kessler ◽  
D Burns ◽  
C Oliver ◽  
T Bailey ◽  
P Harty ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document