A history of tourism at the Mer de Glace: Adaptations of glacier tourism to glacier fluctuations since 1741

2021 ◽  
Vol 18 (8) ◽  
pp. 1977-1994
Author(s):  
Emmanuel Salim ◽  
Laura Mabboux ◽  
Ludovic Ravanel ◽  
Philip Deline ◽  
Christophe Gauchon
2020 ◽  
Author(s):  
Elena Serra ◽  
Pierre G. Valla ◽  
Natacha Gribenski ◽  
Fabio Magrani ◽  
Julien Carcaillet ◽  
...  

<p>Mountain glaciers are useful quantitative paleoclimate proxies because of their mass-balance being sensitive to both temperature and precipitation. Paleoglacial reconstructions in the Alps, together with other paleoclimate proxies<sup>[1]</sup>, suggest a shift in Alpine atmospheric circulation during the Last Glacial Maximum (LGM), with a change from northerly (Atlantic) to south-westerly (Mediterranean) moisture advection<sup>[2]</sup>. However, the post-LGM reorganization of the atmospheric circulation system in terms of both amplitude and timing remains elusive, as well as the resulting glacier response in the Alps<sup>[3,4]</sup>.</p><p>This study focuses on Aosta Valley and its tributaries (SW Alps, Italy). Few chronological constraints are available for the post-LGM glacial history of the region, mainly related to the Ivrea Amphitheatre (terminal extent of Pleistocene glaciations)<sup>[5]</sup> and the Mont-Blanc massif<sup>[6]</sup>. We aim to quantify the potential variability in glacier responses for the different massif catchments of Aosta Valley, our working hypothesis being that they have distinct geomorphic (e.g. hypsometry) and climatic conditions (e.g. aspect, moisture sources). Following a detailed geomorphological mapping of glacial landforms and deposits, we sampled moraine boulders and glacially-polished bedrock for <em>in-situ</em> <sup>10</sup>Be surface exposure dating in 3 main massifs: Mont-Blanc (Courmayeur), Matterhorn (Valpelline) and Gran Paradiso (Val di Cogne and Valsavarenche). In addition, we also investigated the confluence between Aosta Valley and Gran Paradiso valleys (Saint Pierre area). Morphometric analyses were conducted to investigate the possible influence of local factors (e.g. hypsometry and aspect) on glacier fluctuations, before isolating a climatic signal from our paleoglacial reconstructions.</p><p>Our <sup>10</sup>Be chronology and boulder provenance results testify that glaciers from Mont-Blanc were lastly occupying the Aosta Valley in Saint Pierre at ca. 15 ka, while Gran Paradiso glaciers had already retreated within tributary valleys. In the upper Aosta Valley, Mont-Blanc glaciers retreat is marked by at least<sup>[7]</sup> two Late-glacial stages nearby Courmayeur at ca. 14 and 11 ka. Bedrock deglaciation profiles in Valpelline (SW of Matterhorn) record an onset of ice-thinning at ca. 14 ka, well after glacier retreat from the Ivrea Amphitheatre (20-24 ka)<sup>[5]</sup>. This result agrees with other studies from high Alpine passes<sup>[9]</sup>, supporting the idea that glaciers thinning within the high Alps clearly postdated the rapid post-LGM deglaciation in the foreland. Final deglaciation of Valpelline occurred at ca. 10-11 ka (Younger Dryas), roughly synchronous with the final glacier retreat in Courmayeur. Additional <sup>10</sup>Be samples from the Gran Paradiso valleys are under process to further assess potential spatial variability in post-LGM glacier fluctuations between the main northern and southern massifs. Finally, paleoglacial reconstructions and geochronology constraints will be included in ice numerical simulations to test the potential influence of precipitation changes on glacier retreat within the Aosta Valley.</p><p><strong>References</strong></p><p><sup>[1]</sup>Heiri, O. et al., 2014, Quaternary Science Reviews.</p><p><sup>[2]</sup>Florineth, D. & Schlüchter, C., 2000, Quaternary Research.</p><p><sup>[3]</sup>Luetscher, M. et al., 2015, Nature Communications.</p><p><sup>[4]</sup>Monegato, G. et al., 2017, Scientific reports.</p><p><sup>[5]</sup>Gianotti, F. et al., 2015, Alpine and Mediterranean Quaternary.</p><p><sup>[6]</sup>Wirsig, C. et al., 2016, Quaternary Science Reviews.</p><p><sup>[7]</sup>Porter, S. & Orombelli, G., 1982, Boreas.</p><p><sup>[8]</sup>Ivy-ochs, S., 2015, Cuadernos de Investigación Geográfica.</p><p><sup>[9]</sup>Hippe, K. et al., 2014, Quaternary Geochronology.</p>


2021 ◽  
Author(s):  
Hans Fernández ◽  
Juan-Luis García ◽  
Samuel U. Nussbaumer ◽  
Alessa Geiger ◽  
Isabelle Gärtner-Roer ◽  
...  

<p>The geochronological and geomorphological reconstruction of glacier fluctuations is required to assess the timing and structure of climate changes of the last glacial cycle in the subtropical Andes of Chile. The scarcity of data in this region limits the knowledge related to the timing of glacial landscape changes during this long-term period. To provide a new framework to better understand the climate history of the semiarid Andes of Chile, we have reconstructed the glacial history of the Universidad glacier (34° S).</p><p>Our mapping shows the existence of four moraine belts (UNI I to UNI IV, from outer to inner) that are spatially unequally distributed along the 13 km of the valley between ~2500 and ~1400 m a.s.l. We applied <sup>10</sup>Be cosmogenic surface exposure dating to 26 granodioritic boulders on moraines and determined the age of the associated glacial advances. UNI I moraine represents the distal glacier advance between 20.8±0.8 and 17.8±0.8 kyr ago (number of <sup>10</sup>Be samples = 11). Other two significative glacier advances terminated one and four km up-valley from the UNI I moraine, respectively, formed 16.1±0.9 kyr (n=1) (UNI II) and 14.6±1 to 10±0.5 kyr ago (n=3) (UNI III). A sequence of six distinct and smaller moraine ridges has been identified in the proglacial area. They are part of last significative glacier advances labeled as UNI IV. The four distal ridges have been dated to between 645-150 years ago (n=11), while the most proximal moraines coincide with mid-20<sup>th</sup> century and 1997 aerial photographs.</p><p>The results indicate that the Universidad glacier advanced during the Last Glacial Maximum (LGM) (UNI I). Deglaciation was punctuated by glacier readvances during the Late Glacial when the UNI II and UNI III moraines were deposited. Finally, UNI IV moraine shows six glacier fluctuations developed between the 14th and 20<sup>th</sup> centuries.</p><p>Our data suggest that the glacier advances by the Universidad glacier were triggered by intensified southern westerly winds bringing colder and wetter conditions to subtropical latitudes in the SE Pacific. Moreover, our data indicate that more or less in-phase Late-Glacial advances along the tropical and extratropical Andes occurred. We discuss different climate forcings that explain these glacier changes. Finally, we illustrate the influence of the “Little Ice Age” in the Semiarid Andes.</p>


Sign in / Sign up

Export Citation Format

Share Document