Late Holocene glacial history of the Copper River Delta, coastal south-central Alaska, and controls on valley glacier fluctuations

2013 ◽  
Vol 81 ◽  
pp. 74-89 ◽  
Author(s):  
David J. Barclay ◽  
Elowyn M. Yager ◽  
Jason Graves ◽  
Michael Kloczko ◽  
Parker E. Calkin
2020 ◽  
Author(s):  
Elena Serra ◽  
Pierre G. Valla ◽  
Natacha Gribenski ◽  
Fabio Magrani ◽  
Julien Carcaillet ◽  
...  

<p>Mountain glaciers are useful quantitative paleoclimate proxies because of their mass-balance being sensitive to both temperature and precipitation. Paleoglacial reconstructions in the Alps, together with other paleoclimate proxies<sup>[1]</sup>, suggest a shift in Alpine atmospheric circulation during the Last Glacial Maximum (LGM), with a change from northerly (Atlantic) to south-westerly (Mediterranean) moisture advection<sup>[2]</sup>. However, the post-LGM reorganization of the atmospheric circulation system in terms of both amplitude and timing remains elusive, as well as the resulting glacier response in the Alps<sup>[3,4]</sup>.</p><p>This study focuses on Aosta Valley and its tributaries (SW Alps, Italy). Few chronological constraints are available for the post-LGM glacial history of the region, mainly related to the Ivrea Amphitheatre (terminal extent of Pleistocene glaciations)<sup>[5]</sup> and the Mont-Blanc massif<sup>[6]</sup>. We aim to quantify the potential variability in glacier responses for the different massif catchments of Aosta Valley, our working hypothesis being that they have distinct geomorphic (e.g. hypsometry) and climatic conditions (e.g. aspect, moisture sources). Following a detailed geomorphological mapping of glacial landforms and deposits, we sampled moraine boulders and glacially-polished bedrock for <em>in-situ</em> <sup>10</sup>Be surface exposure dating in 3 main massifs: Mont-Blanc (Courmayeur), Matterhorn (Valpelline) and Gran Paradiso (Val di Cogne and Valsavarenche). In addition, we also investigated the confluence between Aosta Valley and Gran Paradiso valleys (Saint Pierre area). Morphometric analyses were conducted to investigate the possible influence of local factors (e.g. hypsometry and aspect) on glacier fluctuations, before isolating a climatic signal from our paleoglacial reconstructions.</p><p>Our <sup>10</sup>Be chronology and boulder provenance results testify that glaciers from Mont-Blanc were lastly occupying the Aosta Valley in Saint Pierre at ca. 15 ka, while Gran Paradiso glaciers had already retreated within tributary valleys. In the upper Aosta Valley, Mont-Blanc glaciers retreat is marked by at least<sup>[7]</sup> two Late-glacial stages nearby Courmayeur at ca. 14 and 11 ka. Bedrock deglaciation profiles in Valpelline (SW of Matterhorn) record an onset of ice-thinning at ca. 14 ka, well after glacier retreat from the Ivrea Amphitheatre (20-24 ka)<sup>[5]</sup>. This result agrees with other studies from high Alpine passes<sup>[9]</sup>, supporting the idea that glaciers thinning within the high Alps clearly postdated the rapid post-LGM deglaciation in the foreland. Final deglaciation of Valpelline occurred at ca. 10-11 ka (Younger Dryas), roughly synchronous with the final glacier retreat in Courmayeur. Additional <sup>10</sup>Be samples from the Gran Paradiso valleys are under process to further assess potential spatial variability in post-LGM glacier fluctuations between the main northern and southern massifs. Finally, paleoglacial reconstructions and geochronology constraints will be included in ice numerical simulations to test the potential influence of precipitation changes on glacier retreat within the Aosta Valley.</p><p><strong>References</strong></p><p><sup>[1]</sup>Heiri, O. et al., 2014, Quaternary Science Reviews.</p><p><sup>[2]</sup>Florineth, D. & Schlüchter, C., 2000, Quaternary Research.</p><p><sup>[3]</sup>Luetscher, M. et al., 2015, Nature Communications.</p><p><sup>[4]</sup>Monegato, G. et al., 2017, Scientific reports.</p><p><sup>[5]</sup>Gianotti, F. et al., 2015, Alpine and Mediterranean Quaternary.</p><p><sup>[6]</sup>Wirsig, C. et al., 2016, Quaternary Science Reviews.</p><p><sup>[7]</sup>Porter, S. & Orombelli, G., 1982, Boreas.</p><p><sup>[8]</sup>Ivy-ochs, S., 2015, Cuadernos de Investigación Geográfica.</p><p><sup>[9]</sup>Hippe, K. et al., 2014, Quaternary Geochronology.</p>


2010 ◽  
Vol 33 (3-4) ◽  
pp. 101-114 ◽  
Author(s):  
J.A. Santos ◽  
L.J. Cunha ◽  
C.E. Cordova ◽  
G.C. Wiles

2019 ◽  
Vol 10 (1) ◽  
pp. 163-179
Author(s):  
Sharon E. Smythe ◽  
Dana M. Sanchez ◽  
Clinton W. Epps

Abstract Many models used to estimate nutritional carrying capacity (NCC) for ungulates differ structurally, but the implications of those differences are frequently unclear. We present a comparative analysis of NCC estimates for a large herbivore in a dynamic landscape, using models that differ in structure and scope. We compared three model structures across three estimates of winter ranges under three winter-severity scenarios for an isolated, introduced moose Alces alces population on the Copper River Delta of south-central Alaska. Model estimates of NCC ranged from 205 to 4,592 moose, demonstrating the critical influences of model structure and assumptions when applying NCC. Furthermore, population estimates during recent severe winters suggest that past models underestimated NCC on the Copper River Delta. We conducted a sensitivity analysis of a preferred model and determined that model components with the highest and lowest sensitivity were snow depth and lignin- and tannin-caused reductions in forage nutritional quality, respectively. Our low sensitivity values for lignin and tannin influences on NCC contrast with results in other NCC estimates. Overall, our results reinforce the need for, and will hopefully assist, adaptive management in response to landscape, population, behavioral, and climatic changes on the Copper River Delta, and demonstrate the importance of understanding model assumptions and structure in application of NCC estimates in the management of large herbivores in variable ecosystems.


Quaternary ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 9
Author(s):  
James Innes ◽  
Wishart Mitchell ◽  
Charlotte O’Brien ◽  
David Roberts ◽  
Mairead Rutherford ◽  
...  

The lower reaches of the River Ure, on the flanks of the Pennine Hills in northern England, contain sedimentary and erosional landforms that are a record of fluvial activity during deglaciation and valley-glacier retreat at the end of the last (Devensian) glacial period, and in the subsequent post-glacial Holocene. Terraces and channels, most of which are now relict features well above the altitude of the present river, attest to the impacts of massive meltwater discharge and deposition of sand and gravel outwash, and dynamic river regimes with rapid incision. Through field survey, we have created a detailed geomorphological map of these landforms and glacial and fluvioglacial surface deposits, as well as the terraces and palaeochannels that were abandoned by the river due to avulsion and incision-driven course changes. We have recorded the nature of the outwash gravels, now effectively terrace features, from exposed sections in working quarries, one of which we discuss here. The palaeochannels have accumulated sediment fills and we have examined several which lie within the range of 100 and 16 m above present sea level. The results of lithostratigraphic, palynological, and radiocarbon analyses at two main and three subsidiary sites indicate that palaeochannel ages range from almost 14,000 to approximately 4000 calibrated years ago in a clear altitudinal sequence. The oldest are probably caused by rapid incision due to deglaciation-driven isostatic uplift. The similarity in date of the three downstream sites suggests that a late Holocene combination of climatic deterioration and increased human activity in the catchment caused instability and entrenchment. Pollen data from the channel fills provide relative dating, and agree well with pollen records from other regional Lateglacial and Holocene sites. Non-pollen palynomorph (NPP) analysis at one of the sites allows reconstruction of the hydrological history of channel infill. This research shows that the application of an integrated suite of research techniques can yield a highly detailed understanding of fluvial evolution and landscape history.


The Holocene ◽  
2000 ◽  
Vol 10 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Áslaug Geirsdóttir ◽  
Jórunn Hardardóttir ◽  
John T. Andrews

1958 ◽  
Vol 3 (24) ◽  
pp. 298-303
Author(s):  
J. N. Jennings ◽  
M. R. Banks

A. N. Lewis’s scheme of Tasmania’s Pleistocene glacial history in terms of three full glaciations —Malanna (ice cap), Yolande (valley glacier) and Margaret (cirque glacier)—is criticized on a number of specific and general grounds. The area reliably known to be glaciated is thought to be much smaller than Lewis claimed. Future work on Tasmanian glaciations should not be grafted on to Lewis’s scheme and should aim especially to provide more reliable evidence for distinguishing and evaluating the glacial phases.


Sign in / Sign up

Export Citation Format

Share Document