scholarly journals Design of a Discrete-time Output-feedback Based Repetitive-control System

2013 ◽  
Vol 10 (4) ◽  
pp. 343-349 ◽  
Author(s):  
Lan Zhou ◽  
Jin-Hua She ◽  
Min Wu
2013 ◽  
Vol 16 (2) ◽  
pp. 509-518 ◽  
Author(s):  
Lan Zhou ◽  
Jinhua She ◽  
Shaowu Zhou ◽  
Min Wu

2014 ◽  
Vol 24 (2) ◽  
pp. 325-334 ◽  
Author(s):  
Lan Zhou ◽  
Jinhua She ◽  
Shaowu Zhou

Abstract This paper is concerned with the problem of designing a robust modified repetitive-control system with a dynamic output feedback controller for a class of strictly proper plants. Employing the continuous lifting technique, a continuous-discrete two-dimensional (2D) model is built that accurately describes the features of repetitive control. The 2D control input contains the direct sum of the effects of control and learning, which allows us to adjust control and learning preferentially. The singular-value decomposition of the output matrix and Lyapunov stability theory are used to derive an asymptotic stability condition based on a Linear Matrix Inequality (LMI). Two tuning parameters in the LMI manipulate the preferential adjustment of control and learning. A numerical example illustrates the tuning procedure and demonstrates the effectiveness of the method.


Author(s):  
Mitsuaki ISHITOBI ◽  
Zenta IWAI ◽  
Keiichi HIROMOTO ◽  
Mitsushi HINO

2016 ◽  
Vol 26 (2) ◽  
pp. 285-295 ◽  
Author(s):  
Lan Zhou ◽  
Jinhua She ◽  
Chaoyi Li ◽  
Changzhong Pan

Abstract This paper concerns the problem of designing an EID-based robust output-feedback modified repetitive-control system (ROFMRCS) that provides satisfactory aperiodic-disturbance rejection performance for a class of plants with time-varying structured uncertainties. An equivalent-input-disturbance (EID) estimator is added to the ROFMRCS that estimates the influences of all types of disturbances and compensates them. A continuous-discrete two-dimensional model is built to describe the EID-based ROFMRCS that accurately presents the features of repetitive control, thereby enabling the control and learning actions to be preferentially adjusted. A robust stability condition for the closed-loop system is given in terms of a linear matrix inequality. It yields the parameters of the repetitive controller, the output-feedback controller, and the EID-estimator. Finally, a numerical example demonstrates the validity of the method.


Sign in / Sign up

Export Citation Format

Share Document