Improvement of Creep Resistance at 950 °C and 400 MPa in Ru-Containing Single-Crystal Superalloys with a High Level of Co Addition

2018 ◽  
Vol 49 (11) ◽  
pp. 5298-5308 ◽  
Author(s):  
J. J. Huo ◽  
Q. Y. Shi ◽  
S. Tin ◽  
L. F. Li ◽  
Q. Feng
Alloy Digest ◽  
1992 ◽  
Vol 41 (11) ◽  

Abstract CMSX-2 is a single crystal alloy development of Cannon-Muskegon Corporation designed to achieve a high level of balanced properties. This datasheet provides information on composition, physical properties, as well ascreep and fatigue. Filing Code: Ni-417. Producer or source: Cannon-Muskegon Corporation.


2021 ◽  
Author(s):  
Ali Mehrvar ◽  
Alireza Mirak ◽  
Mohsen Motamedi

Abstract A special position has been created for using the nickel-based single-crystal CMSX-4 superalloy at high temperatures due to the improved mechanical properties of this material and the absence of grain boundary in the crystal lattice. Also, electrochemical machining can be an effective method for machining this superalloy due to its unique performance in metal machining, like creating stress-free surfaces, high-level surface smoothness, and machining of complex geometries. This single crystal superalloy's microstructure consists of three phases: Gamma, Gamma prime, and a bit of carbide. Gamma prime is distributed cubically and homogeneously in the Gamma field without any boundaries and as a single crystal. It is essential not to change the microstructure after the production process or machining. In the present research, electrochemical machining was performed on CMSX-4 single crystal superalloy. The workpiece's microstructure was then investigated before and after electrochemical machining using scanning electron microscopy and EDS analysis from two sides. No changes were seen in CMSX-4 infrastructure after electrochemical machining EDS analysis and Images.


2020 ◽  
Vol 49 (18) ◽  
pp. 5932-5938
Author(s):  
Yunwei Zhao ◽  
Pengfei Jiang ◽  
Wenliang Gao ◽  
Rihong Cong ◽  
Jing Ju ◽  
...  

A high level of Eu3+ (7 atom%) was doped successfully, suggesting the possible single crystal growth of bi-functional RE3+-doped δ-BiB3O6.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2703-2703 ◽  
Author(s):  
Adonis Stassinopoulos ◽  
Mary Ann Schott ◽  
Grace M. Castro ◽  
Lisa M. Turin

Abstract Background S-303 was developed to inactivate viruses, bacteria, protozoa, and leukocytes in red blood cell concentrates (RBC). S-303 is a modular FRALE compound (FRangible Anchor Linker Effector) designed to bind to nucleic acids with its Anchor, to react through its Effector, and to form cross-links. S-303 spontaneously decomposes to the non-reactive compound S-300 by hydrolysis of the Linker, to minimize protein adducts. Pathogen inactivation (PI) treatment utilized the co-addition of S-303 and unbuffered GSH to quench non-specific S-303 reactions. The treatment process was optimized to maintain RBC function and maximize PI. Pre-clinical dog and rabbit chronic transfusion studies with allogeneic S-303 RBC showed no detectable antibodies to S-303 RBC. In Phase 1 studies, transfusion of healthy subjects with autologous human S-303 RBC demonstrated acceptable post-transfusion recovery and life span. Repeated transfusion (n=5) of 28 healthy subjects with autologous S-303 RBC showed no detectable antibodies to S-303 RBC. In a Phase 3 trial evaluating chronic transfusion of allogeneic S-303 RBC to patients with thalassemia or sickle cell anemia, 2 of 26 patients developed low titer positive Indirect Antiglobulin Tests (IAT) to S-303 RBC (one of the 2 patients also had a direct reacting IgM agglutinin). For both patients Direct Antiglobulin Tests (DAT) were negative. However, pretreatment RBC from the same unit remained compatible. S-303-related Anchor derivatives inhibited the positive IAT. Following this observation, clinical trials of S-303 RBC were stopped, studies were initiated to define the immunologic response to S-303 RBC, and an improved S-303 treatment process was developed. Methods The original PI process utilized 200 μM S-303 and 2 mM unbuffered GSH. The process was modified to use 10-fold more neutralized GSH (20 mM) added to RBC 10 minutes prior to addition of S-303 (200μM). High titer anti-Anchor sera (RaS) were elicited by immunizing rabbits with a stable Anchor-KLH construct. A FACS assay to detect decoration of RBC with S-303 was developed using RaS and FITC goat anti-rabbit (GAR) IgG. IAT assays were performed with two methods: High titer RaS were tested with buffer gel cards (MTS), S-303 RBC suspended in low ionic strength solution (LISS) and GAR IgG. Reactive patient sera were tested with S-303 RBC and anti-IgG gel cards (MTS) Results S-303 RBC prepared with the original clinical process were positive for IAT by gel card for both the RaS (1:100) and for the patient sera (1:3). FACS analysis using RaS (1:100) with FITC GAR IgG (1:64) demonstrated a high level of labeling. Under the modified conditions (S-303m), S-303m RBC exhibited minimal labeling above background by FACS with RaS. Sera from the 2 patients with positive IAT against S-303 RBC were negative against S-303m RBC. In addition, high titer RaS were negative against S-303m RBC in IAT by gel card. Potent inactivation of bacteria in S303m RBC (S. epidermis, S. marcescens) and viruses (Vesicular stomatitis virus) was retained. Storage of S-303m RBC for 42 days exhibited hemolysis and K+ levels comparable to S303 RBC and higher ATP levels than S-303 RBC. Conclusions An improved PI process has been developed that significantly reduces RBC decoration by S-303 while maintaining PI and RBC in vitro function. The new process eliminated the positive IAT reactivity with sera from patients previously alloimmunized to S-303 RBC.


1994 ◽  
Vol 80 (7) ◽  
pp. 568-573 ◽  
Author(s):  
Yoshihiro KONDO ◽  
Naoya KITAZAKI ◽  
Jirou NAMEKATA ◽  
Narihito OHI ◽  
Hiroshi HATTORI

Author(s):  
Barbara Kościelniak ◽  
Kamil Gancarczyk ◽  
Marek Poręba ◽  
Robert Albrecht

AbstractThis paper focuses on the influence of crystallographic orientation on creep resistance of CMSX-4 nickel-based superalloy. The single-crystal rods of CMSX-4 superalloy were manufactured with the use of the Bridgman method at a withdrawal rate of 3 mm/min. The crystallographic orientation of the rods was determined by the X-ray Ω-scan method with OD-EFG diffractometer and the Laue back-reflection technique. The creep tests were performed at a temperature of 982°C and the value of stress σ = 248 MPa. Microstructural investigation before and after the creep test of CMSX-4 superalloy was performed using a scanning electron microscope. The results showed that the distribution of the values of α angle strongly affects the creep resistance of a single-crystal superalloy.


2015 ◽  
Vol 816 ◽  
pp. 551-556
Author(s):  
Su Gui Tian ◽  
Bao Shuai Wang ◽  
Xin Ding ◽  
De Long Shu ◽  
Jing Wu

Creep behavior of a heat treated single crystal nickel base superalloy containing Re/Ru under the test condition of 1100°C/137MPa high temperatures was investigated. The experimental results showed that the segregation extent of elements in the dendrite and inter-dendrite regions of single crystal superalloy decreases by heat treatment at high temperature. The creep life of the alloy at 1100°C/137MPa was measured to be 321 h displaying a better creep resistance. Wherein, significant amount of fine cubiodal γ′ particles precipitated in the γ matrix channels are considered to be the main reason of the alloy having the better creep resistance. The deformation feature of the alloy during steady state creep is dislocations slipping in the γ matrix and climbing over the rafted γ′ phase. But in the latter stage of creep, the deformation feature of the alloy is dislocations shearing into the rafted γ′ phase. As creep goes on, the main / secondary slipping dislocations in the alloy are alternately activated to result in the initiation and propagation of the cracks along the interface of the rafted γ′/γ phase up to fracture, which is thought to be the fracture mechanism of the alloy during creep.


Sign in / Sign up

Export Citation Format

Share Document