Response to Thermal Exposure of Ball-Milled Aluminum-Borax Powder Blends

2012 ◽  
Vol 44 (2) ◽  
pp. 359-364 ◽  
Author(s):  
Yucel Birol
2019 ◽  
Vol 2 (1) ◽  
pp. 29-39 ◽  
Author(s):  
S. G. Konesev ◽  
P. A. Khlyupin

Introduction: the systems of thermal effects on thermo-dependent, viscous and highly viscous liquids under conditions of the Arctic and the Extreme North are considered. Low efficiency and danger of heating systems based on burned hydrocarbons, heated liquids and steam are shown. Electrothermal heating systems used to maintain thermo-dependent fluids in a fluid state are considered. The evaluation of the effectiveness of the application of the most common electrothermal system — heating cables (tapes). The most effective electrothermal system based on induction technologies has been determined. Materials and methods: considered methods of thermal exposure to maintain the fluid properties of thermo-dependent fluids at low extreme temperatures. Results: presents an induction heating system and options for its implementation in the Extreme North and the Arctic. Conclusions: induction heating system to minimize loss of product quality, improve the system performance under changing process conditions, eliminate fire product, to reduce the influence of the human factor.


Author(s):  
Qiang Gao ◽  
Mark Zhang ◽  
Ming Li ◽  
Chorng Niou ◽  
W.T. Kary Chien

Abstract This paper examines copper-interconnect integrated circuit transmission electron microscope (TEM) sample contamination. It investigates the deterioration of the sample during ion milling and storage and introduces prevention techniques. The paper discusses copper grain agglomeration issues barrier/seed step coverage checking. The high temperature needed for epoxy solidifying was found to be harmful to sidewall coverage checking of seed. Single beam modulation using a glass dummy can efficiently prevent contamination of the area of interest in a TEM sample during ion milling. Adoption of special low-temperature cure epoxy resin can greatly reduce thermal exposure of the sample and prevent severe agglomeration of copper seed on via sidewall. TEM samples containing copper will deteriorate when stored in ordinary driers and sulphur contamination was found at the deteriorated point on the sample. Isolation of the sample from the ambient atmosphere has been verified to be very effective in protecting the TEM sample from deterioration.


1984 ◽  
Author(s):  
Sakaye Matsuda ◽  
Howard C. Schafer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document