scholarly journals Dynamic Wetting of CaO-Al2O3-SiO2-MgO Liquid Oxide on MgAl2O4 Spinel

2014 ◽  
Vol 46 (1) ◽  
pp. 208-219 ◽  
Author(s):  
Hamed Abdeyazdan ◽  
Neslihan Dogan ◽  
M. Akbar Rhamdhani ◽  
Michael W. Chapman ◽  
Brian J. Monaghan
2020 ◽  
Vol 7 ◽  
Author(s):  
Monica Francesca Pucci ◽  
Benoît Duchemin ◽  
Moussa Gomina ◽  
Joël Bréard

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 872
Author(s):  
Yunlu Ma ◽  
Xinjian Bao ◽  
Xi Liu

MgAl2O4-spinel has wide industrial and geological applications due to its special structural and physical–chemical features. It is presumably the most important endmember of complex natural spinel solid solutions, and therefore provides a structural model for a large group of minerals with the spinel structure. There exists a well known but still inadequately understood phenomenon in the structure of MgAl2O4-spinel, the Mg–Al cations readily exchanging their positions in response to variations of temperature, pressure, and composition. A large number of experiments were performed to investigate the Mg–Al cation order-disorder process usually quantified by the inversion parameter x (representing either the molar fraction of Al on the tetrahedral T-sites or the molar fraction of Mg on the octahedral M-sites in the spinel structure), and some thermodynamic models were thereby constructed to describe the x-T relation. However, experimental data at some key T were absent, so that the different performance of these thermodynamic models could not be carefully evaluated. This limited the interpolation and extrapolation of the thermodynamic models. By performing some prolonged annealing experiments with some almost pure natural MgAl2O4-spinel plates and quantifying the x values with single-crystal X-ray diffraction technique, we obtained some critical equilibrium x values at T down to 773 K. These new x-T data, along with those relatively reliable x values at relatively high T from early studies, clearly indicate that the CS94 Model (a model constructed by Carpenter and Salje in 1994) better describes the Mg–Al cation order-disorder reaction in MgAl2O4-spinel for a wide range of T. On the basis of the CS94 Model, a geothermometer was established, and its form is T-closure = 21362 × x3 − 12143 × x2 + 6401 × x − 10 (T-closure standing for the closure temperature of the Mg–Al cation exchange reaction). This geothermometer can be used to constrain the thermal history of the geological bodies containing MgAl2O4-spinel.


2020 ◽  
Vol 229 (10) ◽  
pp. 1923-1934 ◽  
Author(s):  
Tomas Fullana ◽  
Stéphane Zaleski ◽  
Stéphane Popinet

2020 ◽  
Vol 298 (6) ◽  
pp. 595-602
Author(s):  
Junchao Wang ◽  
Yijun Cao ◽  
Guosheng Li ◽  
Yingwei Wang ◽  
Shulei Li ◽  
...  

Author(s):  
Carl B Agee

Hydrous silicate melts appear to have greater compressibility relative to anhydrous melts of the same composition at low pressures (<2 GPa); however, at higher pressures, this difference is greatly reduced and becomes very small at pressures above 5 GPa. This implies that the pressure effect on the partial molar volume of water in silicate melt is highly dependent on pressure regime. Thus, H 2 O can be thought of as the most compressible ‘liquid oxide’ component in silicate melt at low pressure, but at high pressure its compressibility resembles that of other liquid oxide components. A best-fit curve to the data on from various studies allows calculation of hydrous melt compression curves relevant to high-pressure planetary differentiation. From these compression curves, crystal–liquid density crossovers are predicted for the mantles of the Earth and Mars. For the Earth, trapped dense hydrous melts may reside atop the 410 km discontinuity, and, although not required to be hydrous, atop the core–mantle boundary (CMB), in accord with seismic observations of low-velocity zones in these regions. For Mars, a density crossover at the base of the upper mantle is predicted, which would produce a low-velocity zone at a depth of approximately 1200 km. If perovskite is stable at the base of the Martian mantle, then density crossovers or trapped dense hydrous melts are unlikely to reside there, and long-lived, melt-induced, low-velocity regions atop the CMB are not predicted.


Sign in / Sign up

Export Citation Format

Share Document