partial wetting
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 22)

H-INDEX

27
(FIVE YEARS 1)

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2470
Author(s):  
Yunfan Yang ◽  
Jinyang Chen ◽  
Guoli Ma ◽  
Dingqing Yang

Polyacrylate emulsions were prepared by Pickering emulsion polymerization with multi-modified hectorite as a modifier. The proper wettability of modified hectorite and the stability of O/W emulsions prove that modified hectorite has good emulsification properties. The stability of polyacrylate latexes and the morphology of polymer latex particles were then investigated to explain the role of multi-modified hectorite in stabilizing polyacrylate latex. In addition, the improved mechanical properties and water resistance of the latex make it a potentially excellent coating. Multi-modified hectorite as an alternative modifier to conventional surfactants offers a potential application of nanosolid particles that meet the partial wetting conditions for water and oil as stabilizers for the production of latexes for coatings.


2021 ◽  
Author(s):  
Mohammad Tabatabaieyazdi

To apprehend the real industrial behavior of polymeric materials phase separation phenomenon, the nonlinear Cahn-Hilliard theory incorporating the Flory-Huggins-de Gennes free energy theory was used to study the non-uniform thermal-induced phase separation phenomenon in a symmetric binary polymer blend in which surface(s) with short- and long-range attraction to one polymer component compete with temperature gradient effects. The numerical results indicate that an increase of diffusion coefficient value will increase the rate of phase separation in the bulk but will decrease the growth rate of the wetting layer on the surface regardless of the surface potential strength. Also, the morphology transition from complete to partial wetting of the surface with short range surface attraction is successfully demonstrated. However, no partial wetting is observed for the surface with long-range potential. For shallow quenches, first, a growth rate of t 0.5 is observed in the early stage of spinodal decomposition phase separation at the surface and then a decline in the growth rate to t 0.13 in the intermediate stage occurred. For short- and long-range surface potential, the growth rate value of t 0.33 obtained in the bulk. The morphology results of temperature gradient effect on surface directed spinodal decomposition in short-range, long- range and multiple-surface attraction cases have been presented for the first time. It is realized that regardless of surface potential magnitude, surface enrichment is increased by higher temperature gradient (deep quenches on the side with no surface attraction). The studied models would provide more in depth understanding of polymer blendiprocesses.


2021 ◽  
Author(s):  
Mohammad Tabatabaieyazdi

To apprehend the real industrial behavior of polymeric materials phase separation phenomenon, the nonlinear Cahn-Hilliard theory incorporating the Flory-Huggins-de Gennes free energy theory was used to study the non-uniform thermal-induced phase separation phenomenon in a symmetric binary polymer blend in which surface(s) with short- and long-range attraction to one polymer component compete with temperature gradient effects. The numerical results indicate that an increase of diffusion coefficient value will increase the rate of phase separation in the bulk but will decrease the growth rate of the wetting layer on the surface regardless of the surface potential strength. Also, the morphology transition from complete to partial wetting of the surface with short range surface attraction is successfully demonstrated. However, no partial wetting is observed for the surface with long-range potential. For shallow quenches, first, a growth rate of t 0.5 is observed in the early stage of spinodal decomposition phase separation at the surface and then a decline in the growth rate to t 0.13 in the intermediate stage occurred. For short- and long-range surface potential, the growth rate value of t 0.33 obtained in the bulk. The morphology results of temperature gradient effect on surface directed spinodal decomposition in short-range, long- range and multiple-surface attraction cases have been presented for the first time. It is realized that regardless of surface potential magnitude, surface enrichment is increased by higher temperature gradient (deep quenches on the side with no surface attraction). The studied models would provide more in depth understanding of polymer blendiprocesses.


2021 ◽  
Author(s):  
Michaela Heier ◽  
Felix Diewald ◽  
Martin Horsch ◽  
Kai Langenbach ◽  
Ralf Müller ◽  
...  

A comprehensive molecular dynamics study of gas phase and supercritical fluid adsorption on planar walls in dispersive systems is presented. All interactions in the system are described with the Lennard-Jones truncated and shifted (LJTS) potential with a cutoff radius of 2.5 fluid diameters. The adsorption strength is characterized by the solid-fluid interaction energy and the wall density. Both parameters are varied systematically. The present work extends a previous study in which wetting in the same systems was investigated. Therefore, the contact angles are known for all studied systems. They include cases with total wetting as well as cases with partial wetting. The temperature varies between the triple point and 3 times the critical temperature of the LJTS fluid. For the systems with partial wetting, the adsorption is studied not only up to the saturation pressure but also in the metastable region. For all systems, the surface excess is determined as a function of pressure and temperature. Furthermore, data on the thickness and structure of the adsorbed layers is reported. In some of the systems, prewetting is observed.


2020 ◽  
Vol 135 (3) ◽  
pp. 619-631
Author(s):  
Christopher Hall ◽  
Victoria Pugsley

AbstractRates of spontaneous imbibition of water and nonaqueous liquids into dry limestones have been measured at 25 °C. Thirteen English and French limestones were used, with eight liquids (water, decane, dodecane, sec-butanol, iso-propanol, tetrahydrofuran, perfluorodimethylcyclohexane, ethanediol). For the nonaqueous liquids, the measured sorptivity generally scales as (surface-tension/viscosity)$$^{1/2}$$ 1 / 2 (here called F-scaling). Water sorptivities deviate from F-scaling, indicating partial wetting. A wetting coefficient (wetting index) is derived. Data show that there is little difference in the Hirschwald saturation coefficient measured with the different liquids, although there is a large variation between stones. Results suggest that physicochemical alteration of exposed pore surfaces strongly (and unpredictably) influences the capillary absorption of water by limestones.


Sign in / Sign up

Export Citation Format

Share Document