prolonged annealing
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 2)

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 872
Author(s):  
Yunlu Ma ◽  
Xinjian Bao ◽  
Xi Liu

MgAl2O4-spinel has wide industrial and geological applications due to its special structural and physical–chemical features. It is presumably the most important endmember of complex natural spinel solid solutions, and therefore provides a structural model for a large group of minerals with the spinel structure. There exists a well known but still inadequately understood phenomenon in the structure of MgAl2O4-spinel, the Mg–Al cations readily exchanging their positions in response to variations of temperature, pressure, and composition. A large number of experiments were performed to investigate the Mg–Al cation order-disorder process usually quantified by the inversion parameter x (representing either the molar fraction of Al on the tetrahedral T-sites or the molar fraction of Mg on the octahedral M-sites in the spinel structure), and some thermodynamic models were thereby constructed to describe the x-T relation. However, experimental data at some key T were absent, so that the different performance of these thermodynamic models could not be carefully evaluated. This limited the interpolation and extrapolation of the thermodynamic models. By performing some prolonged annealing experiments with some almost pure natural MgAl2O4-spinel plates and quantifying the x values with single-crystal X-ray diffraction technique, we obtained some critical equilibrium x values at T down to 773 K. These new x-T data, along with those relatively reliable x values at relatively high T from early studies, clearly indicate that the CS94 Model (a model constructed by Carpenter and Salje in 1994) better describes the Mg–Al cation order-disorder reaction in MgAl2O4-spinel for a wide range of T. On the basis of the CS94 Model, a geothermometer was established, and its form is T-closure = 21362 × x3 − 12143 × x2 + 6401 × x − 10 (T-closure standing for the closure temperature of the Mg–Al cation exchange reaction). This geothermometer can be used to constrain the thermal history of the geological bodies containing MgAl2O4-spinel.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 935
Author(s):  
Nelly Maria Rosas-Laverde ◽  
Alina Iuliana Pruna ◽  
Jesus Cembrero ◽  
David Busquets-Mataix

Electroless Ni-Mo-P coatings were deposited onto ceramic tiles in order to be employed as electrodes for the electrodeposition of ZnO and Cu2O heterojunction layers. Varying conditions, such as duration, annealing of the electroless coating and applied potential, and duration for ZnO electrodeposition were studied in order to optimize the properties of the ZnO/Cu2O heterojunctions toward improved photoelectrical performance. The coatings were evaluated in terms of morphology, crystalline structure, and by electrochemical and photoelectrical means. The obtained results indicated that a prolonged annealing treatment at low temperature is beneficial to improve the roughness and electrical conductivity of the Ni-Mo-P coating to further enhance the electrodeposition of ZnO. The morphology analysis revealed continuous and homogeneous Ni-Mo-P coatings. The formation of cube-like Cu2O crystals with larger grain size was induced by increasing the deposition duration of ZnO. The properties of ZnO layer are much improved when a higher cathodic potential is applied (−0.8 V) for 1 h, resulting in optimum photoelectric parameters as 1.44 mA·cm−2 for the JSC and 760.23 µV for the VOC value, respectively, for the corresponding heterojunction solar cell.


2020 ◽  
Vol 261 ◽  
pp. 127160 ◽  
Author(s):  
Zhenyu Wang ◽  
Wentao Li ◽  
Cuicui Wang ◽  
Haichen Wu ◽  
Peiling Ke ◽  
...  

Author(s):  
S.A. Nikulin ◽  
◽  
S.O. Rogachev ◽  
S.G. Vasiliev ◽  
V.A. Belov ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 316 ◽  
Author(s):  
Aleksey Nokhrin ◽  
Iana Shadrina ◽  
Vladimir Chuvil’deev ◽  
Vladimir Kopylov

The thermal stability of a fine-grained (FG) aluminum wire has been studied in Al-0.6Mg-Zr-Sc alloys with various scandium and zirconium contents. Specimens were obtained by induction casting followed by cold deformation. The FG alloys have been demonstrated to have high thermal stability of the structure and properties due to the annealing pretreatment (320 °C, 2 h, before drawing), which results in deposition of Al3(ScxZr1−x) intermetallic particles. It has been determined that following a prolonged annealing treatment (400 °C, 100 h), the alloys retain a uniform fine-grained structure with an average grain size of 2.4–2.8 μm whereas their microhardness measures 405–440 MPa.


Sign in / Sign up

Export Citation Format

Share Document