MnBi-Based Bulk Magnets: Preparation and Magnetic Performance

Author(s):  
Truong Xuan Nguyen ◽  
Ngan Thuy Thi Dang ◽  
Vuong Van Nguyen
Keyword(s):  
Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4400
Author(s):  
Luca Ferraris ◽  
Fausto Franchini ◽  
Emir Pošković ◽  
Marco Actis Grande ◽  
Róbert Bidulský

In recent years, innovative magnetic materials have been introduced in the field of electrical machines. In the ambit of soft magnetic materials, laminated steels guarantee good robustness and high magnetic performance but, in some high-frequency applications, can be replaced by Soft Magnetic Composite (SMC) materials. SMC materials allow us to reduce the eddy currents and to design innovative 3D magnetic circuits. In general, SMCs are characterized at room temperature, but as electrical machines operate at high temperature (around 100 °C), an investigation analysis of the temperature effect has been carried out on these materials; in particular, three SMC samples with different binder percentages and process parameters have been considered for magnetic and energetic characterization.


Author(s):  
Jianjun Yang ◽  
Dongtao Zhang ◽  
Zhihong Xie ◽  
Zhifeng Shang ◽  
Yuqing Li ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Lordan ◽  
Guannan Wei ◽  
Paul McCloskey ◽  
Cian O’Mathuna ◽  
Ansar Masood

AbstractThe emergence of perpendicular magnetic anisotropy (PMA) in amorphous thin films, which eventually transforms the magnetic spins form an in-plane to the out-of-plane configuration, also known as a spin-reorientation transition (SRT), is a fundamental roadblock to attain the high flux concentration advantage of these functional materials for broadband applications. The present work is focused on unfolding the origin of PMA in amorphous thin films deposited by magnetron sputtering. The amorphous films were deposited under a broad range of sputtering pressure (1.6–6.2 mTorr), and its effect on the thin film growth mechanisms was correlated to the static global magnetic behaviours, magnetic domain structure, and dynamic magnetic performance. The films deposited under low-pressure revealed a dominant in-plane uniaxial anisotropy along with an emerging, however feeble, perpendicular component, which eventually evolved as a dominant PMA when deposited under high-pressure sputtering. This change in the nature of anisotropy redefined the orientation of spins from in-plane to out-of-plane. The SRT in amorphous films was attributed to the dramatic change in the growth mechanism of disorder atomic structure from a homogeneously dispersed to a porous columnar microstructure. We suggest the origin of PMA is associated with the columnar growth of the amorphous films, which can be eluded by a careful selection of a deposition pressure regime to avoid its detrimental effect on the soft magnetic performance. To the author’s best knowledge, no such report links the sputtering pressure as a governing mechanism of perpendicular magnetisation in technologically important amorphous thin films.


Rare Metals ◽  
2021 ◽  
Author(s):  
Xiao-Lian Liu ◽  
Xiao-Wei Wu ◽  
Jia-Ying Jin ◽  
Yong-Ming Tao ◽  
Xin-Hua Wang ◽  
...  

2012 ◽  
Vol 523-524 ◽  
pp. 961-966
Author(s):  
Hideaki Tanaka ◽  
Yukio Maeda

Magnetic recording technologies are continuing to advance toward higher areal densities, driven by the availability of tunneling magnetoresistive (TMR) heads. However, high areal density heads require smaller physical dimensions, and this can render TMR heads more vulnerable to mechanical stresses generated during the lapping process. Although is important to verify the durability of TMR heads against lapping, it is very difficult to perform a crystallographic analysis of the affected layer because of the small dimensions involved. In this study, we attempted to establish an advanced TMR head verification method based on a magnetic performance analysis involving micro-Kerr hysteresis loops and the magnetic noise spectrum. We found that the magnetic performance changed when nanoscale scratches were removed from the lapped surface using ion beam etching. This indicates that the lapping process produces an affected layer which deteriorates the magnetic characteristics of the TMR head. A correlation was also found between the change in magnetic performance and the morphology of lapped surface.


Author(s):  
Stig Hogberg ◽  
Flemming Buus Bendixen ◽  
Nenad Mijatovic ◽  
Bogi Bech Jensen ◽  
Joachim Holboll
Keyword(s):  

2014 ◽  
Vol 18 (sup4) ◽  
pp. S4-634-S4-638 ◽  
Author(s):  
C. Yao ◽  
Y. H. Zhang ◽  
J. Chen ◽  
D. X. Bao ◽  
S. Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document