scholarly journals Pathologies of Between-Groups Principal Components Analysis in Geometric Morphometrics

2019 ◽  
Vol 46 (4) ◽  
pp. 271-302 ◽  
Author(s):  
Fred L. Bookstein

Abstract Good empirical applications of geometric morphometrics (GMM) typically involve several times more variables than specimens, a situation the statistician refers to as “high p/n,” where p is the count of variables and n the count of specimens. This note calls your attention to two predictable catastrophic failures of one particular multivariate statistical technique, between-groups principal components analysis (bgPCA), in this high-p/n setting. The more obvious pathology is this: when applied to the patternless (null) model of p identically distributed Gaussians over groups of the same size, both bgPCA and its algebraic equivalent, partial least squares (PLS) analysis against group, necessarily generate the appearance of huge equilateral group separations that are fictitious (absent from the statistical model). When specimen counts by group vary greatly or when any group includes fewer than about ten specimens, an even worse failure of the technique obtains: the smaller the group, the more likely a bgPCA is to fictitiously identify that group as the end-member of one of its derived axes. For these two reasons, when used in GMM and other high-p/n settings the bgPCA method very often leads to invalid or insecure biological inferences. This paper demonstrates and quantifies these and other pathological outcomes both for patternless models and for models with one or two valid factors, then offers suggestions for how GMM practitioners should protect themselves against the consequences for inference of these lamentably predictable misrepresentations. The bgPCA method should never be used unskeptically—it is always untrustworthy, never authoritative—and whenever it appears in partial support of any biological inference it must be accompanied by a wide range of diagnostic plots and other challenges, many of which are presented here for the first time.

2019 ◽  
Author(s):  
Fred L. Bookstein

AbstractGood empirical applications of geometric morphometrics (GMM) typically involve several times more variables than specimens, a situation the statistician refers to as “highp/n,” wherepis the count of variables andnthe count of specimens. This note calls your attention to two predictable catastrophic failures of one particular multivariate statistical technique, between-groups principal components analysis (bgPCA), in this high-p/nsetting. The more obvious pathology is this: when applied to the patternless (null) model ofpidentically distributed Gaussians over groups of the same size, both bgPCA and its algebraic equivalent, partial least squares (PLS) analysis against group, necessarily generate the appearance of huge equilateral group separations that are actually fictitious (absent from the statistical model). When specimen counts by group vary greatly or when any group includes fewer than about ten specimens, an even worse failure of the technique obtains: the smaller the group, the more likely a bgPCA is to fictitiously identify that group as the end-member of one of its derived axes. For these two reasons, when used in GMM and other high-p/nsettings the bgPCA method very often leads to invalid or insecure bioscientific inferences. This paper demonstrates and quantifies these and other pathological outcomes both for patternless models and for models with one or two valid factors, then offers suggestions for how GMM practitioners should protect themselves against the consequences for inference of these lamentably predictable misrepresentations. The bgPCA method should never be used unskeptically — it is never authoritative — and whenever it appears in partial support of any biological inference it must be accompanied by a wide range of diagnostic plots and other challenges, many of which are presented here for the first time.


2006 ◽  
Vol 53 (4) ◽  
pp. 427-437 ◽  
Author(s):  
Mirko Savic

For the last decade, the employment structure is one of the fastest changing areas of Eastern Europe. This paper explores the best methodology to compare the employment situations in the countries of this region. Multivariate statistical analyses are very reliable in portraying the full picture of the problem. Principal components analysis is one of the simplest multivariate methods. It can produce very useful information about Eastern European employment in a very easy and understandable way.


2006 ◽  
Vol 23 (3) ◽  
pp. 106-118 ◽  
Author(s):  
Gordon E. Sarty ◽  
Kinwah Wu

AbstractThe ratios of hydrogen Balmer emission line intensities in cataclysmic variables are signatures of the physical processes that produce them. To quantify those signatures relative to classifications of cataclysmic variable types, we applied the multivariate statistical analysis methods of principal components analysis and discriminant function analysis to the spectroscopic emission data set of Williams (1983). The two analysis methods reveal two different sources of variation in the ratios of the emission lines. The source of variation seen in the principal components analysis was shown to be correlated with the binary orbital period. The source of variation seen in the discriminant function analysis was shown to be correlated with the equivalent width of the Hβ line. Comparison of the data scatterplot with scatterplots of theoretical models shows that Balmer line emission from T CrB systems is consistent with the photoionization of a surrounding nebula. Otherwise, models that we considered do not reproduce the wide range of Balmer decrements, including ‘inverted’ decrements, seen in the data.


2002 ◽  
Vol 45 (4-5) ◽  
pp. 227-235 ◽  
Author(s):  
J. Lennox ◽  
C. Rosen

Fault detection and isolation (FDI) are important steps in the monitoring and supervision of industrial processes. Biological wastewater treatment (WWT) plants are difficult to model, and hence to monitor, because of the complexity of the biological reactions and because plant influent and disturbances are highly variable and/or unmeasured. Multivariate statistical models have been developed for a wide variety of situations over the past few decades, proving successful in many applications. In this paper we develop a new monitoring algorithm based on Principal Components Analysis (PCA). It can be seen equivalently as making Multiscale PCA (MSPCA) adaptive, or as a multiscale decomposition of adaptive PCA. Adaptive Multiscale PCA (AdMSPCA) exploits the changing multivariate relationships between variables at different time-scales. Adaptation of scale PCA models over time permits them to follow the evolution of the process, inputs or disturbances. Performance of AdMSPCA and adaptive PCA on a real WWT data set is compared and contrasted. The most significant difference observed was the ability of AdMSPCA to adapt to a much wider range of changes. This was mainly due to the flexibility afforded by allowing each scale model to adapt whenever it did not signal an abnormal event at that scale. Relative detection speeds were examined only summarily, but seemed to depend on the characteristics of the faults/disturbances. The results of the algorithms were similar for sudden changes, but AdMSPCA appeared more sensitive to slower changes.


2020 ◽  
Vol 25 (1-2) ◽  
pp. 35-56
Author(s):  
Vasil Simeonov

Abstract The present introductory course of lectures summarizes the principles and algorithms of several widely used multivariate statistical methods: cluster analysis, principal components analysis, principal components regression, N-way principal components analysis, partial least squares regression and self-organizing maps with respect to their possible application in intelligent analysis, classification, modelling and interpretation to environmental monitoring data. The target group of possible users is master program students (environmental chemistry, analytical chemistry, environmental modelling and risk assessment etc.).


2015 ◽  
Vol 22 (3) ◽  
pp. 297-331 ◽  
Author(s):  
Neil Millar ◽  
Susan Hunston

From a corpus consisting of free text comments submitted to the website RateMyProfessors.com, adjectives describing people have been identified and clustered using Principal Components Analysis. This follows the Meaning Extraction method used by Chung & Pennebaker (2007). The outcome is a set of seven factors, each of which is interpretable as representing a dimension of meaning along which individual professors have been evaluated. These dimensions are in turn discussed using Martin & White’s (2005) parameters of Judgement and Appreciation, and Coffin’s (2002) concept of evaluative voices. It is argued that contributors to RateMyProfessors.com have available three distinct voices: ‘novice intellectual’, ‘consumer’, and ‘subordinate’. The paper demonstrates how a bottom-up, statistical technique may be used to provide the initial data for identifying evaluative parameters. It raises the possibility that such parameters may be specific to individual discourse communities. It therefore offers a complementary and problematizing alternative to top-down, researcher-driven taxonomies of evaluative meaning.


1980 ◽  
Vol 19 (04) ◽  
pp. 205-209
Author(s):  
L. A. Abbott ◽  
J. B. Mitton

Data taken from the blood of 262 patients diagnosed for malabsorption, elective cholecystectomy, acute cholecystitis, infectious hepatitis, liver cirrhosis, or chronic renal disease were analyzed with three numerical taxonomy (NT) methods : cluster analysis, principal components analysis, and discriminant function analysis. Principal components analysis revealed discrete clusters of patients suffering from chronic renal disease, liver cirrhosis, and infectious hepatitis, which could be displayed by NT clustering as well as by plotting, but other disease groups were poorly defined. Sharper resolution of the same disease groups was attained by discriminant function analysis.


Sign in / Sign up

Export Citation Format

Share Document