A linear quadratic regulator control of a stand-alone PEM fuel cell power plant

2013 ◽  
Vol 8 (1) ◽  
pp. 62-72 ◽  
Author(s):  
Amar Benaissa ◽  
Boualaga Rabhi ◽  
Ammar Moussi ◽  
Dahmani Aissa
2004 ◽  
Vol 138 (1-2) ◽  
pp. 199-204 ◽  
Author(s):  
M.Y. El-Sharkh ◽  
A. Rahman ◽  
M.S. Alam ◽  
P.C. Byrne ◽  
A.A. Sakla ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yun Haitao ◽  
Zhao Yulan ◽  
Liu Zunnian ◽  
Hao Kui

Based on the mathematical model of fuel cell hybrid vehicle (FCHV) proposed in our previous study, a multistate feedback control strategy of the hybrid power train is designed based on the linear quadratic regulator (LQR) algorithm. A Kalman Filter (KF) observer is introduced to estimate state of charge (SOC) of the battery firstly, and then a linear quadratic regulator is constructed to compute the state feedback gain matrix of the closed-loop control system. At last, simulation and actual test are utilized to demonstrate this new approach.


Author(s):  
Stefano Campanari ◽  
Giulio Guandalini ◽  
Jorg Coolegem ◽  
Jan ten Have ◽  
Patrick Hayes ◽  
...  

The chlor-alkali industry produces significant amounts of hydrogen as byproduct and an interesting benefit can be obtained by feeding hydrogen to a PEM fuel cell unit, whose electricity and heat production can cover part of the chemical plant consumptions. The estimated potential of such application is up to 1100 MWel installed in the sole China, a country featuring a large presence of chlor-alkali plants. This work presents the modeling, development and first experimental results from field tests of a 2 MW PEM fuel cell power plant, built within the European project DEMCOPEM-2MW and installed in Yingkou, China as the current world’s largest PEM fuel cell installation. After a preliminary introduction to the market potential of PEM Fuel cells in the chlor-alkali industry, it is first discussed an overview of project’s MEA and fuel cell development for long life stationary applications, focusing on the design-for-manufacture process and the high-volume manufacturing route developed for the 2MW plant. The work then discusses the modeling of the power plant, including a specific lumped model predicting FC stack behavior as a function of inlet streams conditions and power set point, according to regressed polarization curves. Cells performance decay vs. lifetime reflects long-term stack test data, aiming to evidence the impact on overall energy balances and efficiency of the progression of lifetime. BOP is modeled to simulate auxiliaries consumption, pressure drops and components operating conditions. The model allows studying different operational strategies that maintain the power production during lifetime, minimizing efficiency losses; as well as to investigate the optimized operating setpoint of the plant at full load and during part-load operation. The last section of the paper discusses the experimental results, through a complete analysis of the plant performance after plant startup, including energy and mass balances and allowing to validate the model. Cumulated indicators over the first nine months of operations regarding energy production, hydrogen consumption and efficiency are also discussed.


Sign in / Sign up

Export Citation Format

Share Document