Energy-based adaptive matching pursuit algorithm for binary sparse signal reconstruction in compressed sensing

2014 ◽  
Vol 8 (6) ◽  
pp. 1039-1048 ◽  
Author(s):  
Xue Bi ◽  
Xiangdong Chen ◽  
Xiaoyu Li ◽  
Lu Leng
2021 ◽  
Author(s):  
Han Wang ◽  
Xianpeng Wang

Abstract For the sparse correlation between channels in multiple input multiple output filter bank multicarrier with offset quadrature amplitude modulation (MIMO-FBMC/OQAM) systems, the distributed compressed sensing (DCS)-based channel estimation approach is studied. A sparse adaptive distributed sparse channel estimation method based on weak selection threshold is proposed. Firstly, the correlation between MIMO channels is utilized to represent a joint sparse model, and channel estimation is transformed into a joint sparse signal reconstruction problem. Then, the number of correlation atoms for inner product operation is optimized by weak selection threshold, and sparse signal reconstruction is realized by sparse adaptation. The experiment results show that proposed DCS-based method not only estimates the multipath channel components accurately but also achieves higher channel estimation performance than classical orthogonal matching pursuit (OMP) method and other traditional DCS methods in the time-frequency dual selective channels.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yigang Cen ◽  
Fangfei Wang ◽  
Ruizhen Zhao ◽  
Lihong Cui ◽  
Lihui Cen ◽  
...  

Compressed sensing (CS) is a theory which exploits the sparsity characteristic of the original signal in signal sampling and coding. By solving an optimization problem, the original sparse signal can be reconstructed accurately. In this paper, a new Tree-based Backtracking Orthogonal Matching Pursuit (TBOMP) algorithm is presented with the idea of the tree model in wavelet domain. The algorithm can convert the wavelet tree structure to the corresponding relations of candidate atoms without any prior information of signal sparsity. Thus, the atom selection process will be more structural and the search space can be narrowed. Moreover, according to the backtracking process, the previous chosen atoms’ reliability can be detected and the unreliable atoms can be deleted at each iteration, which leads to an accurate reconstruction of the signal ultimately. Compared with other compressed sensing algorithms, simulation results show the proposed algorithm’s superior performance to that of several other OMP-type algorithms.


Sign in / Sign up

Export Citation Format

Share Document