scholarly journals Tree-Based Backtracking Orthogonal Matching Pursuit for Sparse Signal Reconstruction

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yigang Cen ◽  
Fangfei Wang ◽  
Ruizhen Zhao ◽  
Lihong Cui ◽  
Lihui Cen ◽  
...  

Compressed sensing (CS) is a theory which exploits the sparsity characteristic of the original signal in signal sampling and coding. By solving an optimization problem, the original sparse signal can be reconstructed accurately. In this paper, a new Tree-based Backtracking Orthogonal Matching Pursuit (TBOMP) algorithm is presented with the idea of the tree model in wavelet domain. The algorithm can convert the wavelet tree structure to the corresponding relations of candidate atoms without any prior information of signal sparsity. Thus, the atom selection process will be more structural and the search space can be narrowed. Moreover, according to the backtracking process, the previous chosen atoms’ reliability can be detected and the unreliable atoms can be deleted at each iteration, which leads to an accurate reconstruction of the signal ultimately. Compared with other compressed sensing algorithms, simulation results show the proposed algorithm’s superior performance to that of several other OMP-type algorithms.

2021 ◽  
Vol 11 (11) ◽  
pp. 4816
Author(s):  
Haoqiang Liu ◽  
Hongbo Zhao ◽  
Wenquan Feng

Recent years have witnessed that real-time health monitoring for vehicles is gaining importance. Conventional monitoring scheme faces formidable challenges imposed by the massive signals generated with extremely heavy burden on storage and transmission. To address issues of signal sampling and transmission, compressed sensing (CS) has served as a promising solution in vehicle health monitoring, which performs signal sampling and compression simultaneously. Signal reconstruction is regarded as the most critical part of CS, while greedy reconstruction has been a research hotspot. However, the existing approaches either require prior knowledge of the sparse signal or perform with expensive computational complexity. To exploit the structure of the sparse signal, in this paper, we introduce an initial estimation approach for signal sparsity level firstly. Then, a novel greedy reconstruction algorithm that relies on no prior information of sparsity level while maintaining a good reconstruction performance is presented. The proposed algorithm integrates strategies of regularization and variable adaptive step size and further performs filtration. To verify the efficiency of the algorithm, typical voltage disturbance signals generated by the vehicle power system are taken as trial data. Preliminary simulation results demonstrate that the proposed algorithm achieves superior performance compared to the existing methods.


2012 ◽  
Vol 04 (04) ◽  
pp. 1250026 ◽  
Author(s):  
ZHIQIANG XU

The orthogonal matching pursuit (OMP) is a popular decoder to recover sparse signal in compressed sensing. Our aim is to investigate the theoretical properties of OMP. In particular, we show that the OMP decoder can give (p, q) instance optimality for a large class of encoders with 1 ≤ p ≤ q ≤ 2 and (p, q) ≠ (2, 2).


2013 ◽  
Vol 333-335 ◽  
pp. 567-571
Author(s):  
Zhao Shan Wang ◽  
Shan Xiang Lv ◽  
Jiu Chao Feng ◽  
Yan Sheng ◽  
Zhong Liang Wu ◽  
...  

Signal recovery is a key issue in compressed sensing field. A new greedy reconstruction algorithm termed Optimised Stagewise Orthogonal Matching Pursuit (OSOMP) is proposed, which is an improved version for Stagewise Orthogonal Matching Pursuit (StOMP). In preselection step, OSOMP chooses several coordinates with a calculated threshold to accelerate the convergence of algorithm. In following pruning step, a small proportion of selected coordinates are discarded according to the amplitude of estimated signal, thus most false discovered coordinates can be swept away. Experimental results show that in OSOMP, the scale of estimated support can be controlled very well, and the successful recovery rate is also much higher than that in StOMP.


Sign in / Sign up

Export Citation Format

Share Document