scholarly journals ROSE: real one-stage effort to detect the fingerprint singular point based on multi-scale spatial attention

Author(s):  
Liaojun Pang ◽  
Jiong Chen ◽  
Fei Guo ◽  
Zhicheng Cao ◽  
Eryun Liu ◽  
...  
Author(s):  
Lei Pei ◽  
Gong Cheng ◽  
Xuxiang Sun ◽  
Qingyang Li ◽  
Meili Zhang ◽  
...  

Author(s):  
Bei Bei Fan ◽  
He Yang

The current traffic sign detection technology is disturbed by factors such as illumination changes, weather, and camera angle, which makes it unsatisfactory for traffic sign detection. The traffic sign data set usually contains a large number of small objects, and the scale variance of the object is a huge challenge for traffic indication detection. In response to the above problems, a multi-scale traffic sign detection algorithm based on attention mechanism is proposed. The attention mechanism is composed of channel attention mechanism and spatial attention mechanism. By filtering the background information on redundant contradictions with channel attention mechanism in the network, the information on the network is more accurate, and the performance of the network to recognize the traffic signs is improved. Using spatial attention mechanism, the proposed method pays more attention to the object area in traffic recognition image and suppresses the non-object area or background areas. The model in this paper is validated on the Tsinghua-Tencent 100K data set, and the accuracy of the experiment reached a higher level compared to state-of-the-art approaches in traffic sign detection.


Author(s):  
Qijie Zhao ◽  
Tao Sheng ◽  
Yongtao Wang ◽  
Zhi Tang ◽  
Ying Chen ◽  
...  

Feature pyramids are widely exploited by both the state-of-the-art one-stage object detectors (e.g., DSSD, RetinaNet, RefineDet) and the two-stage object detectors (e.g., Mask RCNN, DetNet) to alleviate the problem arising from scale variation across object instances. Although these object detectors with feature pyramids achieve encouraging results, they have some limitations due to that they only simply construct the feature pyramid according to the inherent multiscale, pyramidal architecture of the backbones which are originally designed for object classification task. Newly, in this work, we present Multi-Level Feature Pyramid Network (MLFPN) to construct more effective feature pyramids for detecting objects of different scales. First, we fuse multi-level features (i.e. multiple layers) extracted by backbone as the base feature. Second, we feed the base feature into a block of alternating joint Thinned U-shape Modules and Feature Fusion Modules and exploit the decoder layers of each Ushape module as the features for detecting objects. Finally, we gather up the decoder layers with equivalent scales (sizes) to construct a feature pyramid for object detection, in which every feature map consists of the layers (features) from multiple levels. To evaluate the effectiveness of the proposed MLFPN, we design and train a powerful end-to-end one-stage object detector we call M2Det by integrating it into the architecture of SSD, and achieve better detection performance than state-of-the-art one-stage detectors. Specifically, on MSCOCO benchmark, M2Det achieves AP of 41.0 at speed of 11.8 FPS with single-scale inference strategy and AP of 44.2 with multi-scale inference strategy, which are the new stateof-the-art results among one-stage detectors. The code will be made available on https://github.com/qijiezhao/M2Det.


2021 ◽  
Vol 13 (2) ◽  
pp. 38
Author(s):  
Yao Xu ◽  
Qin Yu

Great achievements have been made in pedestrian detection through deep learning. For detectors based on deep learning, making better use of features has become the key to their detection effect. While current pedestrian detectors have made efforts in feature utilization to improve their detection performance, the feature utilization is still inadequate. To solve the problem of inadequate feature utilization, we proposed the Multi-Level Feature Fusion Module (MFFM) and its Multi-Scale Feature Fusion Unit (MFFU) sub-module, which connect feature maps of the same scale and different scales by using horizontal and vertical connections and shortcut structures. All of these connections are accompanied by weights that can be learned; thus, they can be used as adaptive multi-level and multi-scale feature fusion modules to fuse the best features. Then, we built a complete pedestrian detector, the Adaptive Feature Fusion Detector (AFFDet), which is an anchor-free one-stage pedestrian detector that can make full use of features for detection. As a result, compared with other methods, our method has better performance on the challenging Caltech Pedestrian Detection Benchmark (Caltech) and has quite competitive speed. It is the current state-of-the-art one-stage pedestrian detection method.


Sign in / Sign up

Export Citation Format

Share Document