Multiple values of skin friction for boundary layer separation flow in power law pseudoplastic fluids

2007 ◽  
Vol 14 (S1) ◽  
pp. 218-220 ◽  
Author(s):  
Lian-cun Zheng ◽  
Chen Liang ◽  
Xin-xin Zhang
1973 ◽  
Vol 40 (2) ◽  
pp. 369-374 ◽  
Author(s):  
D. P. Telionis ◽  
M. J. Werle

The laminar boundary-layer equations for incompressible flow with a mild adverse pressure gradient were numerically solved for flows over downstream moving boundaries. It was demonstrated that the vanishing of skin friction in this case is not related to separation.2 Indeed the integration proceeds smoothly through a point of vanishing skin friction and further downstream a Goldstein-type singularity appears at a station where all the properties of separation according to the model of Moore, Rott, and Sears are present. It is also numerically demonstrated that the singular behavior is not uniform with n, the distance perpendicular to the wall, but it is initiated at a point away from the wall leaving below a region of nonsingular flow. The foregoing points provide numerical justification of the general theoretical models of unsteady boundary-layer separation suggested by Sears and Telionis.


Author(s):  
Quan Liao ◽  
Wenzhi Cui ◽  
Longjian Li ◽  
Yihua Zhang

The characteristic of static stall for an airfoil is very important for the design of wind turbine. As long as the detailed information of boundary layer separation flow around an airfoil is obtained, the static stall characteristics could be predicted appropriately. In this paper, both two dimensional (2D) and three dimensional (3D) mathematical models are implemented to simulate fluid flow around a NREL S809 airfoil. The steady state compressible Reynolds-Averaged Navier-Stokes equations are adopted and solved numerically in this paper. Both one-equation and two-equation turbulence models (i.e., Spalart-Allmaras and k-ω Shear Stress Transport models) are adopted, respectively, to solve the turbulent viscosity in this paper. The simulation results show that more detailed vortex structures are obtained by using 3D Spalart-Allmaras turbulence model at high attack angle as compared to the two-equation k-ω SST turbulence model, and the obtained aerodynamic performance of an airfoil with Spalart-Allmaras model agrees well with the available experimental data. Therefore, it seems that the 3D Spalart-Allmaras turbulence model is more capable to demonstrate the 3D characteristics of boundary layer separation flow than the k-ω SST model, and it is more efficient to predict the characteristics of static stall for the airfoil. Meanwhile, the simulation results also reveal that the 3D characteristics of separation flow play a very important role for the aerodynamic performance of airfoil after the static stall, and then the 2D mathematical model is no longer suitable to simulate the boundary layer separation flow around the airfoil.


Sign in / Sign up

Export Citation Format

Share Document