Energy dissipation of cavity expansion based on generalized non-linear failure criterion under high stresses

2012 ◽  
Vol 19 (5) ◽  
pp. 1419-1424 ◽  
Author(s):  
Jin-feng Zou ◽  
Wu-qi Tong ◽  
Jian Zhao
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Jin-feng Zou ◽  
Jia-min Du

This paper focuses on a novel approach for the quasi-plane strain-softening problem of the cylindrical cavity expansion based on generalized Hoek-Brown failure criterion. Because the intermediate principal stress is deformation-dependent, the quasi-plane strain problem is defined to implement the numerical solution of the intermediate principal stress. This approach assumes that the initial total strain in axial direction is a nonzero constant (ε0) and the plastic strain in axial direction is not zero. Based on 3D failure criterion, the numerical solution of plastic strain is given. Solution of the intermediate principal stress can be derived by Hooke’s law. The radial and circumferential stress and strain considering the intermediate principal stress are obtained by the proposed approach of the intermediate principal stress, stress equilibrium equation, and generalized H-B failure criterion. The numerical results can be used for the solution of strain-softening surrounding rock. In additional, the validity and accuracy of the proposed approach are verified with the published results. At last, parametric studies are carried out using MATLAB programming to highlight the influences of the out-of-plane stress on the stress and displacement of surrounding rock.


Author(s):  
Aaron S. Dinovitzer ◽  
Brian A. Graville ◽  
Alan G. Glover

Failure criteria in current engineering critical assessment procedures for defects in pipelines and welds are stress-based. For example, failure is presumed to occur when the net section average stress reaches some arbitrary flow stress. These approaches are unrealistic for defects of limited length where loading of the net section (ligament) is essentially strain controlled. In order to improve upon this, the authors developed a strain-based failure criterion for part wall pipe defects in terms of the maximum ligament plastic extension. While this criterion[l] provided a basis for assessing the criticality of blunt defects, with respect to plastic collapse, it did not address sharp or planar defects which promote fracture. As a defect becomes sharper, failure is determined more by local strain at the defect tip which is typically characterized by the crack tip opening displacement (CTOD). This paper describes the development of a sharp/planar defect strain-based failure criterion which relates the maximum ligament extension to the critical CTOD of the material. Two and three dimensional non-linear finite element analyses are used to determine local root extensions of circumferential defects which can be related to the loading, defect and pipe dimensions. The root extensions are calibrated to standard CTOD measurements through non-linear finite element analysis. The failure criterion development process considers various defect lengths, material work hardening rates and material models. The failure criterion is compared with analytical and experimental data to demonstrate its predictive capability. The end result of this work is the development of an alternative acceptance criterion for sharp weld defects permitting more effective repair decisions to be made based on a more uniform level of reliability.


Author(s):  
I Karayannis ◽  
A F Vakakis ◽  
F Georgiades

The use of vibro-impact (VI) attachments as shock absorbers is studied. By considering different configurations of primary linear oscillators with VI attachments, the capacity of these attachments to passively absorb and dissipate significant portions of shock energy applied to the primary systems is investigated. Parametric studies are performed to determine the dependence of energy dissipation by the VI attachment in terms of its parameters. Moreover, non-linear shock spectra are used to demonstrate that appropriately designed VI attachments can significantly reduce the maximum levels of vibration of primary systems over wide frequency ranges. This is in contrast to the classical linear vibration absorber, whose action is narrowband. In addition, it is shown that VI attachments can significantly reduce or even completely eliminate resonances appearing in the linear shock spectra, thus providing strong, robust, and broadband shock protection to the primary structures to which they are attached.


Author(s):  
R Wang ◽  
A D Crocombe ◽  
G Richardson ◽  
C I Underwood

The energy dissipation capacity of bolted joints with viscoelastic layers in a spacecraft structure was investigated. Initially, a linear spring dashpot model was used to represent the bolts in a satellite structure. A relationship was developed between the model parameters (stiffness and damping coefficient) and the viscoelastic material and geometric properties (shear modulus, loss factor, operating area, and thickness) of the actual bolted joint. This model was then developed into the non-linear domain. Experiments on bolted joints with viscoelastic layers were carried out to provide information for the non-linear joint model. These models were incorporated into a simple spacecraft model to investigate the effect on the spacecraft response. Based on these numerical analysis, it was found that the joints can dissipate much energy and the response of the spacecraft structure to vibrations during launch can be decreased significantly.


Sign in / Sign up

Export Citation Format

Share Document