scholarly journals Erratum to: Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow

2017 ◽  
Vol 24 (10) ◽  
pp. 2486-2486 ◽  
Author(s):  
Majid Siavashi ◽  
Mohammad Jamali
Author(s):  
R. K. Jha ◽  
S Chakraborty

This paper deals with estimation of the optimal dimensions of arrays of plate fins cooled by forced convection. The optimization is achieved by minimizing the entropy generation rate using genetic algorithm-based evolutionary computing techniques. Results are presented for staggered plate fins configuration and continuous plate fins configuration. The effects of heat transfer and fluid friction on entropy generation rate are also reported.


1978 ◽  
Vol 100 (3) ◽  
pp. 429-434 ◽  
Author(s):  
H. Imura ◽  
R. R. Gilpin ◽  
K. C. Cheng

The flow over a horizontal isothermally heated plate at Reynolds numbers below that at which hydrodynamic instabilities exist, is characterized by a region of laminar forced convection near the leading edge, followed by the onset of longitudinal vortices and their growth to a finite amplitude and finally a transition to a turbulent flow regime. Results are presented for the temperature profiles, the thermal boundary layer thickness, and the local Nusselt number. They are used to identify the various flow regimes. It was found that the transition from laminar forced convection to turbulent convection was characterized by the parameter Grx/Rex1.5 falling in the range 100 to 300. For values of this parameter greater than 300 the heat transfer rates were independent of Reynolds number and typical of those for turbulent free convection from a horizontal surface.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Nwosu P. Nwachukwu ◽  
Samuel O. Onyegegbu

An expression for the optimum pin fin dimension is derived on exergy basis for a high temperature exchanger employing pin fins. The present result differs from that obtained by Poulikakos and Bejan (1982, “Fin Geometry for Minimum Entropy Generation in Forced Convection,” ASME J. Heat Transfer, 104, pp. 616–623) for a low temperature heat recovery application. Also, a simple relation is established between the amounts the base temperature of the optimized pin fin is raised for a range of absorptive coating values. Employing this relation, if the absorptivity of the coating, the plate emissivity, the number of protruding fins, and some area and fluid parameters are known, the corresponding value for the base temperature of the fin is immediately obtained. The analysis shows that the thermal performance of the exchanger improves substantially with a high absorptivity coating hence can be seen as a heat transfer enhancement feature of the exchanger operating with radiation dominance.


Sign in / Sign up

Export Citation Format

Share Document