minimum entropy generation
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 2)

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1292
Author(s):  
Najma Saleem ◽  
Sufian Munawar

This study investigates the thermal aspects of magnetohydrodynamic double diffusive flow of a radiated Cu-CuO/Casson hybrid nano-liquid through a microfluidic pump in the presence of electroosmosis effects. Shared effects of the Arrhenius activation energy and the Joule heating on the intended liquid transport are also incorporated. The inner wall of the pump is covered with electrically charged fabricated cilia mat that facilitates flow actuation and micro-mixing process. The governing equations for the proposed problem are simplified by utilizing the Debye-Hückel and lubrication approximations. The numerical solutions are calculated with the aid of shooting technique. The analysis reports that the substantial effects of electroosmosis contribute an important role in cooling process. Existence of electric double layer stimulates an escalation in liquid stream in the vicinity of the pump surface. The Arrhenius energy input strengthens the mass dispersion and regulates the thermal treatment. The proposed geometry delivers a deep perception that fabricated cilia in electroosmotic pumps are potential pharmaceutical micromixers for an effective flow and minimum entropy generation rate.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6399
Author(s):  
Nguyen Minh Phu ◽  
Ngo Thien Tu ◽  
Nguyen Van Hap

In this paper, a triple-pass solar air heater with three inlets is analytically investigated. The effects of airflow ratios of the second and third passes (ranging from 0 to 0.4), and the Reynolds number of the third pass (ranging from 8000 to 18,000) on the thermohydraulic efficiency and entropy generation are assessed. An absorber plate equipped with rectangular fins on both sides is used to enhance heat transfer. The air temperature change in the passes is represented by ordinary differential equations and solved by numerical integration. The results demonstrate that the effect of the third pass airflow ratio on the thermohydraulic efficiency and entropy generation is more significant than that of the second pass airflow ratio. The difference in air temperature through the collector shows an insignificant reduction, but the air pressure loss is only 50% compared with that of a traditional triple-pass solar air heater. Increasing the air flow ratios dramatically reduces entropy generation. Multi-objective optimization found a Reynolds number of 11,156 for both the airflow ratio of the second pass of 0.258 and airflow ratio of the third pass of 0.036 to be the an optimal value to achieve maximum thermohydraulic efficiency and minimum entropy generation.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Sammy Houssainy ◽  
Mohammad Janbozorgi ◽  
Pirouz Kavehpour

Abstract Efficient, large-scale, and cost-effective energy storage systems provide a means of managing the inherent intermittency of renewable energy sources and drastically increasing their utilization. Compressed air energy storage (CAES) and its derivative architectures have received much attention as a viable solution; however, optimization objectives for these systems have not been thoroughly investigated in the literature. A hybrid thermal and compressed air energy storage (HT-CAES) system is investigated that mitigates the shortcomings of the otherwise attractive conventional CAES systems and its derivatives—shortcomings such as strict geological locations, low energy densities, and the production of greenhouse gas emissions. The HT-CAES system allows a portion of the available energy to operate a compressor and the remainder to be converted and stored in the form of heat through joule/resistive heating in a high-temperature, sensible, thermal energy storage medium. Internally reversible and irreversible HT-CAES system assumptions were investigated, in addition to regenerative and non-regenerative design configurations. Several system optimization criteria were examined—including maximum energy efficiency, maximum exergy efficiency, maximum work output, and minimum entropy generation—with a focus on whether the latter may lead to conclusive design guidelines in a real system. It is shown that an HT-CAES system designed based on a minimum entropy generation objective may operate at a lower energy and exergy efficiency as well as lower output power than otherwise achievable. Furthermore, optimization objective equivalence is shown to be limited to certain design conditions.


2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 3001-3011
Author(s):  
Abuzar Ghaffari ◽  
Waqar Khan ◽  
Irfan Mustafa

In this study, the influence of slip flow and temperature jump on the entropy generation rate are investigated in rectangular microducts. The Knudsen numbers are considered in the range between 0.001 and 0.1, and the aspect ratio lies between 0 and 1. The dimensionless governing equations are solved numerically using Chebyshev spectral collocation method, and the dimensionless velocity and temperature gradients are employed in the entropy generation model. The influences of the dimensionless numbers including Bejan number and irreversibility distribution ratio on the entropy generation rates are investigated and discussed through surface plots and contour diagrams. It is demonstrated that the minimum entropy generation rate exists corresponding to an optimal aspect ratio for each dimensionless number. This minimum entropy generation rate depends upon the nature of dimensionless numbers.


Author(s):  
S Bucsa ◽  
D Dima ◽  
A Serban ◽  
M-F Stefanescu ◽  
V Popa ◽  
...  

Author(s):  
Carlos Rangel-Romero ◽  
Juan Carlos Rojas-Garnica ◽  
Ricardo Hernández-Lazcano ◽  
Javier Andrey Moreno-Guzmán

The Average Temperature Process (PAT) is modeled by an equation that is used to calculate the increase in energy needed for the refrigeration cycle, which is equivalent to the energy degradation that corresponds to the production of entropy. This work shows experimentally that the increase in entropy, taking into account the processes of heat transfer that occur in the condensation temperature and in the evaporation temperature between the mechanical vapor compression refrigeration system and the environment, is directly related to the falls of pressure presented in the suction pipe and in the compression process, as well as the heat losses that exist between the main components (evaporator, compressor, condenser and expansion throttling) and the environment. From this development, the behavior of the refrigeration cycle is evaluated in order to obtain a minimum entropy generation criterion in the main components. Analytical as well as experimental results are shown using R-134a refrigerant.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 514
Author(s):  
Beata Niezgoda-Żelasko

This paper looks at entropy generation during ice slurry flow in straight pipes and typical heat exchanger structures used in refrigeration and air-conditioning technology. A dimensionless relationship was proposed to determine the interdependency between flow velocity and the volume fraction of ice, for which the entropy generation rates were at the minimum level in the case of non-adiabatic ice slurry flow. For pipe flow, the correlation between the minimum entropy generation rate and the overall enhancement efficiency was analyzed. As regards heat exchange processes in heat exchangers, the authors analyzed the relationship between the minimum entropy generation rate and the heat exchange surface area and exchanger efficiency.


Sign in / Sign up

Export Citation Format

Share Document