Dynamic disaster control of backfill mining under thick magmatic rock in one side goaf: A case study

2020 ◽  
Vol 27 (10) ◽  
pp. 3103-3117
Author(s):  
Yan-chao Xue ◽  
Tao Xu ◽  
P. L. P. Wasantha ◽  
Tian-hong Yang ◽  
Teng-fei Fu
Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2048 ◽  
Author(s):  
Lea Dasallas ◽  
Yeonsu Kim ◽  
Hyunuk An

Recent studies strongly suggest the possibility of more frequent extreme events as a result of the changing climate. These weather extremes, such as excessive rainfall, result in debris flow, river overflow and urban flooding, which can pose a substantial threat to the community. An effective flood model is therefore a crucial tool in flood disaster control and mitigation. A number of flood models have been established in recent years. However, the major challenge in developing effective and accurate flood models is the disadvantage of running multiple models for separate, individual conditions. Among the solutions in recent research is the development of combined 1D–2D flood modeling. Coupled 1D–2D flood modeling allows the channel flows to be represented in 1D and the overbank flow to be modeled in 2D. In order to test the efficiency of the approach, this research aims to assess the capability of the U.S. Army Corps of Engineers Hydrologic Engineering Center River Analysis System (HEC-RAS) model’s implementation of the combined 1D–2D hydraulic computation in simulating river overflow inundation. For verification, the simulation is applied to the Baeksan river levee breach event in South Korea in 2011. The simulation results show similarities of the observed data and the outputs from widely used flood models. This proves the applicability of the HEC-RAS 1D–2D coupling method as a powerful tool in simulating accurate inundations for flood events.


Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 66 ◽  
Author(s):  
Jian Hao ◽  
Yongkui Shi ◽  
Jiahui Lin ◽  
Xin Wang ◽  
Hongchun Xia

Backfill mining is widely used to control strata movement and improve the stress environment in China’s coal mines. In the present study, the effects of backfill mining on strata movement and water inrush were studied based on a case study conducted in Caozhuang Coal Mine. The in-situ investigation measured abutment pressure distribution (APD), roof floor displacement (RFD), and vertical stress in the backfill area. Results are as follows: (i) The range and peak of APD, RFD, and vertical stress in the backfill area are smaller than in traditional longwall mining with the caving method. (ii) Backfill mining could change the movement form and amplitude of overburden and improve the ground pressure environment. (iii) Floor failure depth (FFD) is much smaller in backfill mining. Backfill mining can be an effective method for floor water inrush prevention.


Sign in / Sign up

Export Citation Format

Share Document