dynamic disaster
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 17)

H-INDEX

6
(FIVE YEARS 1)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kai Wang ◽  
Kangnan Li ◽  
Feng Du

The intensity and depth of China’s coal mining are increasing, and the risk of coal-gas compound dynamic disaster is prominent, which seriously restricts the green, safe, and efficient mining of China’s coal resources. How to accurately predict the risk of disasters is an important basis for disaster prevention and control. In this paper, the Pingdingshan No. 8 coal mine is taken as the research object, and the grey relational analysis (GRA), principal component analysis (PCA), and BP neural network are combined to predict the coal-gas compound dynamic disaster. First, the weights of 13 influencing factors are sorted and screened by grey relational analysis. Next, principal component analysis is carried out on the influencing factors with high weight value to extract common factors. Then, the common factor is used as the input parameter of BP neural network to train the previous data. Finally, the coal-gas compound dynamic disaster prediction model based on GRA-PCA-BP neural network is established. After verification, the model can effectively predict the occurrence of coal-gas compound dynamic disaster. The prediction results are consistent with the actual situation of the coal mine with high accuracy and practicality. This work is of great significance to ensure the safe and efficient production of deep mines.


2021 ◽  
Vol 861 (6) ◽  
pp. 062090
Author(s):  
Runjie Zhang ◽  
Lianman Xu ◽  
Xiaonan Jiang ◽  
Fengshuo Yang

2021 ◽  
Vol 14 (13) ◽  
Author(s):  
Zeng-qiang Yang ◽  
Chang Liu ◽  
Feng-shuo Li ◽  
Lin-ming Dou ◽  
Gang-wei Li ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Feng Li ◽  
Xinhui Dong ◽  
Yue Wang ◽  
Hanwu Liu ◽  
Chuang Chen ◽  
...  

The layered rock mass widely exists in mining, construction, transportation, and water conservancy projects, and the damage phenomena of plate crack and spalling often occurs in the process of coal and rock dynamic disaster in deep mining. Therefore, the rock mass nearby excavation surface is usually considered to be composed of layers of thin plate rock mass to reveal the damage and failure mechanism of rock mass. In the whole dynamic process of mining and coal and rock dynamic disaster, rock mass would bear the dynamic disturbance from mine earthquake, and at present, the mechanical characteristics of rock mass are mainly studied under static load, while dynamic mechanical response characteristics and the mechanisms of dynamic damage, failure, and disaster-causing are still unclear. This study mainly focused on the dynamic response characteristic and failure mechanism of rock mass based on a rectangular thin plate model. The frequency equations and deflection equations of the thin plate rock mass with different boundary conditions (S-F-S-F, S-C-S-C, and C-C-C-C) were established under free vibration by the thin plate model and the dual equation of the Hamilton system, and the deflection equations under impact load were derived based on the Duhamel integral. And then, the effective vibration modes of the thin plate rock mass with different boundary conditions and their natural frequencies were obtained by Newton’s iterative method. Based on the third-strength theory and the numerical simulation results by LS-DYNA, the maximum shear of the effective vibration modes and the processes of damage and failure under impact load were analyzed. The research results showed that the initial position of damage and failure may be determined by effective vibration mode with the lowest frequency; the develop tendency of which by the combined actions of other effective vibration modes and the effective vibration modes with lower frequency could have greater influence on the process of damage and failure of the thin plate rock mass, which are beneficial to revealing the mechanism of coal and rock dynamic disaster.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Zuguang Wang ◽  
Huamin Li ◽  
Shen Wang ◽  
Baobin Gao ◽  
Wen Wang

Deep coal mining is seriously affected by a combined dynamic disaster of rock burst and coal and gas outburst, but the influence mechanism of gas on this combined dynamic disaster is still not very clear, which is significantly different from the single type disasters. In this study, to explore the effect of gas on the coal-rock burst, a novel gas-solid coupling loading apparatus is designed to realize gas adsorption of coal sample with burst proneness and provide uniaxial loading environment under different gas pressure. A series of uniaxial compression tests of gas-containing coal with different gas pressure is carried out, and the energy dissipation process is monitored by an acoustic emission (AE) system. Results show that the macroscopic volume strain of the coal sample increases as gas adsorption and gas pressure increase under constant uniaxial loading pressure. Gas has the ability to expand the pores and natural fractures in coal sample by mechanical and physicochemical effects, which leads to a degradation in microstructure integrity of coal sample. With the increase of gas pressure, both the macrouniaxial compression strength (UCS) and elastic modulus show a downward trend; the UCS and elastic modulus of coal samples with 2 MPa gas pressure reduce by 58.78% and 48.82%, respectively, compared to those of the original coal samples. The main reason is that gas changes the pore-fissure structure and the mesoscopic stress environment inside the coal sample. Owing to the gas, the accumulated elastic energy of the gas-containing coal samples before failure reduces significantly, whereas the energy dissipated during loading increases, and the energy release process in the postpeak stage is smoother, indicating the participation of gas weakens the burst proneness of the coal sample. This study is of important scientific value for revealing the mechanism of combined dynamic disaster and the critical occurrence conditions of coal-rock burst and coal and gas outburst.


2020 ◽  
Vol 27 (10) ◽  
pp. 3103-3117
Author(s):  
Yan-chao Xue ◽  
Tao Xu ◽  
P. L. P. Wasantha ◽  
Tian-hong Yang ◽  
Teng-fei Fu

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Litong Dou ◽  
Ke Yang ◽  
Wenjie Liu ◽  
Xiaolou Chi ◽  
Zhijie Wen

The compound dynamic disaster of coal and gas outbursts and rockburst is a typical hazard jeopardizing the mining of the high gas content coal seam under a hard roof condition. In this study, the hard roof’s mechanism inducing this hazard is analyzed. Physical analog modeling experiments and in situ monitoring of mining-induced stress were performed during coal seam mining under a hard roof condition. The pattern of hard roof breakage effect on the stress-fissure field evolution was revealed. The elastic energy was released and propagated on both sides immediately after the hard roof breaking, leading to energy accumulation. Meanwhile, expansive roof collapse resulted in the intense weighting of the working face and rockburst. Thus, the coal and gas outburst occurred under the joint action of the impact energy generated by breaking the hard roof and gas expansion energy. In other words, the compound dynamic disaster happened. Synergistic stereoextraction integrating cross-seam drilling and along-seam drilling was combined with deep hole advanced presplitting blasting technology to cope with the compound dynamic disaster in the high gas coal seam under a hard roof condition.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Haiyan Wang ◽  
Ji Ma ◽  
Gongda Wang ◽  
Han Gao ◽  
Guangyong Cui ◽  
...  

The occurrence of rockburst dynamic disaster is a process from the microdamage to macroinstability of coal and rock mass, which is accompanied by the acoustic emission (AE) phenomenon. The application of AE technology can reliably help to judge and predict the damage evolution of coal and rock mass, as the most basic problem in the study of AE is the location of the AE source. In this work, the AE source localization experiments of rod-shaped rocks and plate-shaped rocks were carried out. The influence of calibration wave velocity of linear and plane positioning on the location of the AE source was studied. The feasibility analysis of the AE source localization of a plate-shaped rock with different sensor arrays was conducted. The result of the plane location was optimized by wavelet packet analysis combined with cross correlations. The results show that the homogeneity of marble members in this work is suitable, and the positioning error is least affected by wave velocity. In the positioning of the plane AE source, it is suitable to choose a diamond sensor array. The positioning source should be located near the center of the array network. The positioning effect of the rod-shaped rock is generally better than that of the plate-shaped rock. In the actual source positioning work, it should be simplified as much as possible as a linear positioning problem. A more accurate AE signal delay could be obtained using wavelet packet analysis combined with cross-correlation technology, which can greatly reduce the positioning error caused by the accuracy of time difference. The purpose of this work is to provide a basis for determining a more accurate location of the fracture source of rock materials, which is of great significance and application value on the prediction and control of rockburst dynamic disaster.


Sign in / Sign up

Export Citation Format

Share Document