Microbial responses to the use of NaClO in sediment treatment

Author(s):  
Kun Li ◽  
Tingming Ye ◽  
Wang Zhang ◽  
Jianfeng Peng ◽  
Yaohui Bai ◽  
...  
Author(s):  
N. S. Tsarev ◽  
V. I. Aksenov ◽  
I. I. Nichkova

To neutralize the waste pickling solutions and rinsing water, resulting from cleaning metal products s surface of rust by acids solutions, lime is used. Being cheap, this method of sewage neutralization has considerable drawbacks. Forming in the technological pipes strong gypsum depositions and low specific productivity of the equipment for sediment dewatering are most significant of them. Characteristic of aggressive industrial sewage, formed at pickling of ferrous metals presented. Methods of elimination of drawbacks of industrial sewage neutralization by lime considered, including stabilization of neutralized industrial sewage and control of properties of the sediment formed. It was noted, that stability of the circulating water can be provided by accelerating of crystallization of the forming gypsum sediments by introducing in it fine priming powder and heating the neutralized water up to 65-70 °С followed by thermal softening of a part of circulating water, removed out of the circulating system. It was shown, that the heating of the water and the ongoing changes of the composition and properties of the sediment result in decrease of filtration resistance 2-3 folds, increase of deposition speed 3-4 folds and decrease the sediment volume 1.5-2 folds comparing with lime neutralization in cold water. Calculated dozes of lime at the heating were taken the same as at the regular lime neutralization. Elimination of the circulating water oversaturation by bi-water gypsum can be reached also by addition into the water of powder-like gypsum pulp - priming powder for microcrystals of the gypsum, followed by aeration during 30-40 min. This method was tested under industrial conditions. Technological properties of the forming sediment can be improved by sediment treatment by flocculants and preliminary heating of the neutralized water up to 65-70 °С. Control of technological properties of the sediment is done by addition of flocculants and heating of the neutralized water. Recommendations for improving operation of the neutralization facilities presented with indicating particular technological parameters of the equipment operation for sewage and sediment treatment. 


2021 ◽  
Author(s):  
Christoph Rosinger ◽  
Michael Bonkowski

AbstractFreeze–thaw (FT) events exert a great physiological stress on the soil microbial community and thus significantly impact soil biogeochemical processes. Studies often show ambiguous and contradicting results, because a multitude of environmental factors affect biogeochemical responses to FT. Thus, a better understanding of the factors driving and regulating microbial responses to FT events is required. Soil chronosequences allow more focused comparisons among soils with initially similar start conditions. We therefore exposed four soils with contrasting organic carbon contents and opposing soil age (i.e., years after restoration) from a postmining agricultural chronosequence to three consecutive FT events and evaluated soil biochgeoemical responses after thawing. The major microbial biomass carbon losses occurred after the first FT event, while microbial biomass N decreased more steadily with subsequent FT cycles. This led to an immediate and lasting decoupling of microbial biomass carbon:nitrogen stoichiometry. After the first FT event, basal respiration and the metabolic quotient (i.e., respiration per microbial biomass unit) were above pre-freezing values and thereafter decreased with subsequent FT cycles, demonstrating initially high dissimilatory carbon losses and less and less microbial metabolic activity with each iterative FT cycle. As a consequence, dissolved organic carbon and total dissolved nitrogen increased in soil solution after the first FT event, while a substantial part of the liberated nitrogen was likely lost through gaseous emissions. Overall, high-carbon soils were more vulnerable to microbial biomass losses than low-carbon soils. Surprisingly, soil age explained more variation in soil chemical and microbial responses than soil organic carbon content. Further studies are needed to dissect the factors associated with soil age and its influence on soil biochemical responses to FT events.


2015 ◽  
Vol 6 ◽  
Author(s):  
Jürg B. Logue ◽  
Stuart E. G. Findlay ◽  
Jérôme Comte

Author(s):  
Wenxing Li ◽  
Peihua Zhang ◽  
Hao Qiu ◽  
Cornelis A. M. Van Gestel ◽  
Willie J. G. M. Peijnenburg ◽  
...  

2013 ◽  
Vol 405-408 ◽  
pp. 2104-2114
Author(s):  
Guo Ming Gao ◽  
Tao Li ◽  
Zhe Liu ◽  
Xiao Juan Li

Reservoir sediment problem on sediment-laden river is the main puzzle problem in reservoir operation. Reservoir sedimentation, reservoir operation, reservoir sediment treatment and utilization and simulation of reservoir are analyzed in the paper. Difficulty is also provided during the research process. And reservoir sediment research on Yellow River is prospected. The paper can be helpful to provide the basis for reservoir sediment problem on sediment-laden river, and also point out the direction of reservoir sediment research on Yellow River.


2008 ◽  
Vol 72 (5) ◽  
pp. 1471-1477 ◽  
Author(s):  
C. Xiao ◽  
M. Fauci ◽  
D. F. Bezdicek ◽  
W. T. McKean ◽  
W. L. Pan

Sign in / Sign up

Export Citation Format

Share Document